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ABSTRACT

This addendum provides additional details on the distributed

crawler detection algorithm described in our full paper on re-

con in Peer-to-Peer (P2P) botnets [1]. Specifically, we pro-

vide a discussion of the algorithm’s tolerance to adversarial

nodes and Sybil attacks.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—
Invasive Software; C.2.0 [Computer-Communication

Networks]: General—Security and Protection

General Terms

Security
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1. BYZANTINE FAULT TOLERANCE

This addendum details the Byzantine-robustness of
the distributed crawler detection algorithm described
in our full paper on the subject [1]. We evaluate the
algorithm’s tolerance to injection of Byzantine nodes (or
Sybils) which attempt to skew the algorithm outcome in
the host botnet. Specifically, we consider the following
Sybil attacks. (1) Sybils may be injected in unison with
crawling efforts to prevent crawlers from being detected.
(2) Conversely, Sybils may be used to coerce the crawler
detection algorithm into blacklisting legitimate bots.
This section describes the algorithm’s tolerance of these
attacks. Note that centralized versions of our algorithm
are not vulnerable to Sybil attacks [1], though they do
require a hybrid centralized/distributed architecture of
the host P2P botnet.
To obtain full control over the algorithm’s decisions,

an attacker must control the majority of group leaders.
To prevent such attacks, we designed our algorithm such
that the botmaster randomly selects new group leaders
for each round [1]. Thus, attackers cannot predict which
nodes to take over or otherwise attack in order to dom-
inate the group leaders. Nevertheless, if an adversary

injects enough Sybils into the network, the probability
that some of these are selected as leaders (as part of
the normal selection process) becomes non-negligible.
While the leader majority voting process prevents an
individual compromised leader from doing harm, an ex-
cessive Sybil population may succeed by taking over a
majority of leaders. An adversary has full control over
the algorithm outcome if he controls |M | > |G| × v out
of |G| leaders, where M is the set of all Sybil nodes in
the botnet, G is the set of groups, and v is the voting
threshold (for a minimal majority vote, v = 50%).

1.1 Probabilistic Risk Model

We use a statistical evaluation to compute the risk
that a group leader population is dominated by malicious
nodes. This section describes the probabilistic risk model
we use, while Section 1.2 applies our model to derive
the risk of compromise in a full-scale application of our
crawler detection algorithm.
The probability that a malicious peer is (randomly)

selected as a group leader is |M |/|B|, where B is the set
of all bots (including the malicious ones) in the network.

With |G| groups, there are
(

|B|
|G|

)

possible combinations

of group leaders. To compute the risk of compromise,
we must therefore find all combinations that contain
more than v% malicious bots.
For instance, given |G| = 3, v = 50%, |B| = 10 and

|M | = 4, there are
(

10
3

)

= 120 possible group leader
combinations. To dominate the leader population, at
least two group leaders must be malicious. We call such
combinations compromised. We separately compute
the probability of compromise for every majority of n
malicious leaders. For n = 3, there are

(

6
0

)

×
(

4
3

)

= 4
compromised combinations, while for n = 2, there are
(

6
1

)

×
(

4
2

)

= 36 compromised combinations. Thus, for
the given parameters there are a total of 4 + 36 = 40
compromised combinations out of 120 overall, so that
the chance that an adversary gains control over a voting
round is 1/3.
This example can be generalized as follows. There

are
(

(|B|−|M |)
(|G|−n)

)

×
(

|M |
n

)

combinations for which exactly

n group leaders are malicious. The overall number of
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(a) Varying botnet sizes.
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(b) Varying voting thresholds.
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(c) Varying number of groups (even numbers).
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(d) Varying number of groups (odd numbers).

Figure 1: Risk of compromise (y-axis) versus ratio of attacker-controlled bots (x-axis) for different algorithm settings.

compromised combinations is the sum of compromised
combinations for each n ∈ [|G| × v + 1, |G|]. The proba-
bility P (c) of randomly selecting a compromised combi-
nation is then the number of compromised combinations
divided by the number of overall combinations, as shown
in Equation 1.

P (c) =
1

(

|B|
|G|

)

|G|
∑

n=(|G|×v)+1

(

(|B| − |M |)

(|G| − n)

)

×

(

|M |

n

)

(1)

1.2 Probabilistic Risk Evaluation

This section computes the risk of compromise in a
full-scale deployment of our crawler detection algorithm
for various configurations. Figure 1a shows the proba-
bility of compromise versus fraction of malicious bots
(|M |/|B|) for varying botnet size. We fix v = 50%
and |G| = 33 and vary the botnet size |B| from 100 to
1,000,000. As can be seen from the graph, botnet size
does not significantly impact the probability of compro-
mise. Regardless of botnet size, the probability remains
0.7% if attackers control 30% of the bots.

Figure 1b shows the chance of compromise for |G| = 33
and |B| = 100, 000 (a typical P2P botnet size) with vary-

ing voting threshold v. Clearly, lower v means that an
adversary needs to control fewer malicious bots to ma-
nipulate the algorithm outcome, while higher v increases
the resilience against intruders. For instance, a defensive
implementation of our algorithm could choose v = 90%,
so that even if half of the nodes are Sybils, the risk
of compromise is just 0.00007%. In general, choosing
v remains a trade-off between accuracy and complete-
ness (including detection of low-coverage crawlers), and
robustness against intruders.
Figure 1c shows how the number of voting groups

(|G|) influences the robustness of the algorithm for |B| =
100, 000 and v = 50%. The number of groups in Fig-
ure 1c is even, which means that exactly half of the
votes (|G|/2) does not constitute a majority. In the
special case of v = 50%, this changes for odd numbers
of voting groups, as shown in Figure 1d. This causes the
risk of compromise to be slightly higher, as relatively
fewer nodes are required to form a majority. It can be
seen that smaller groups (i.e., larger values for |G|) are
favorable, as this minimizes the risk of compromise if
an attacker controls slightly under v × |B| bots. For
instance, for an attacker that controls 45% of the bots,
the risk of compromise is 40.7% for |G| = 5, but only
20.9% for |G| = 65.
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1.3 Practical Risk Assessment

Section 1.2 has shown that despite our use of majority
votes, an adversary can still probabilistically compromise
the algorithm with a minority of bots, although their
chance of success in any particular detection round may
be low. To see how this can escalate over multiple
detection rounds, consider a practical instance of our
algorithm in the GameOver Zeus botnet (taken from our
full paper on P2P botnet recon [1]), where |G| = 8, v =
50% and |B| ≈ 200, 000. An attacker who injects 50,000
Sybils controls 25% of the nodes and can compromise
the algorithm with a probability of about 1%. While an
individual detection round is unlikely to be compromised,
the probabilistic attack is likely to eventually succeed
in at least some rounds (given enough time and without
further hardening). In this particular example, given
hourly detection rounds, there is an 82% chance that an
adversary can compromise at least one detection round
in a time span of one week. Even without resorting to
a centralized implementation of our algorithm, several
approaches exist to reduce the risk or effect of such
compromise.

Prior work has proposed strategies to limit the damage
potential of Sybil attacks, typically by establishing a
chain of trust or reputation scheme to complicate the
insertion of adversarial nodes [5, 2]. Such techniques can
be combined with our algorithm, though at the expense
of simplicity of deployment.

Alternatively, heuristic approaches can also reduce the
risk of Sybil attacks to a limited degree. For instance,
botmasters can complicate Sybil attacks by limiting the
number of leaders selected from the same network block.
Similarly, leaders can be selected using a reputation
mechanism like that used in Sality [3], or according to
a proof-of-work scheme as proposed by Hund et al. [4].
Note that it is crucial that sufficient randomness is
preserved in leader selection to prevent targeted attacks
against future leaders.
While our algorithm is capable of fully automated

crawler detection, the above suggests that it may not
be wise to automatically blacklist crawlers detected in
a particular round — doing so would allow a single
compromised round to escalate into a blacklisting attack
against the botnet itself. Instead, the decision can be
based on multiple successive detection rounds, or even
on manual evaluation of the results by the botmasters.
Also note that for an adversary to permanently hide
a crawler, they must compromise most or all of the
detection rounds, requiring a far greater number of Sybils
than is needed to compromise a single round.
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