
Compiler-Agnostic Function Detection in Binaries

Dennis Andriesse†, Asia Slowinska, Herbert Bos†

†Vrije Universiteit Amsterdam

EuroS&P 2017

Introduction

Disassembly in Systems Security

Disassembly is the backbone of all binary-level systems security work
(and more)

• Control-Flow Integrity

• Automatic Vulnerability/Bug Search

• Lifting binaries to LLVM/IR (e.g., for reoptimization)

• Malware Analysis

• Binary Hardening

• Binary Instrumentation

• . . .

Compiler-Agnostic Function Detection in Binaries 1 of 19

Introduction

Results from Previous Work

Function detection currently the main disassembly challenge

• Even function start detection yields many FPs/FNs (20%+)

• Complex cases: non-standard prologues, tailcalls, inlining, . . .

• Binary analysis commonly requires function information

 0

 20

 40

 60

 80

 100

O0 O1 O2 O3

%
 c

or
re

ct
 (g

eo
m

et
ric

 m
ea

n)

gcc-5.1.1 x86

angr 4.6.1.4
BAP 0.9.9

ByteWeight 0.9.9
Dyninst 9.1.0

Hopper 3.11.5
IDA Pro 6.7

Jakstab 0.8.4

SPEC (C)
SPEC (C++)

O0 O1 O2 O3

gcc-5.1.1 x64

O0 O1 O2 O3

clang-3.7.0 x86

O0 O1 O2 O3

clang-3.7.0 x64

O0 O1 O2 O3

Visual Studio '15 x86

O0 O1 O2 O3

Visual Studio '15 x64

Figure: Correctly detected function start addresses

Compiler-Agnostic Function Detection in Binaries 2 of 19

Introduction

Function Detection: False Negative

Listing: False negative indirectly called function for IDA Pro 6.7 (gcc
compiled with gcc at O3 for x64 ELF)

6caf10 <ix86 fp compare mode>:

6caf10: mov 0x3f0dde(%rip),%eax

6caf16: and $0x10,%eax

6caf19: cmp $0x1,%eax

6caf1c: sbb %eax,%eax

6caf1e: add $0x3a,%eax

6caf21: retq

Compiler-Agnostic Function Detection in Binaries 3 of 19

Introduction

Function Detection: False Positive

Listing: False positive function (shaded) for Dyninst (perlbench
compiled with gcc at O3 for x64 ELF)

46b990 <Perl pp enterloop>:

[...]

46ba02: ja 46bb50 <Perl pp enterloop+0x1c0>

46ba08: mov %rsi,%rdi

46ba0b: shl %cl,%rdi

46ba0e: mov %rdi,%rcx

46ba11: and $0x46,%ecx

46ba14: je 46bb50 <Perl pp enterloop+0x1c0>

[...]

46bb47: pop %r12

46bb49: retq

46bb4a: nopw 0x0(%rax,%rax,1)

46bb50: sub $0x90,%rax

Compiler-Agnostic Function Detection in Binaries 4 of 19

Current Approaches

Signature-Based Function Detection

• Most current approaches scan for prologue/epilogue signatures
• IDA Pro, Dyninst, ByteWeight (Bao et al. 2014), (Shin et al.

2015)

• Error-prone: sigs may be missing/optimized away

• Non-scalable: new sigs needed for every compiler
version/platform

• Even machine learning approaches need continuous retraining

Compiler-Agnostic Function Detection in Binaries 5 of 19

Overview of Our Approach

Compiler-Agnostic Function Detection

• We propose a signature-less approach based on structural
analysis of the Control-Flow Graph (CFG)

• Basic premise: Weakly Connected Components Analysis

• Compiler-agnostic: no training/maintenance needed

• Able to detect all basic blocks of a function

• Inherent support for corner cases such as non-contiguous
functions

Compiler-Agnostic Function Detection in Binaries 6 of 19

Overview of Our Approach

call

1

1© Disassemble binary and generate interprocedural CFG (linear
disassembly + switch/inline data detection)

Compiler-Agnostic Function Detection in Binaries 7 of 19

Overview of Our Approach

2

2© Hide edges e ∈ Ecall

Compiler-Agnostic Function Detection in Binaries 8 of 19

Overview of Our Approach

3

f1

f2

f3

3© Locate directly called entry points and expand functions by
following control flow (ignoring direction)

Compiler-Agnostic Function Detection in Binaries 9 of 19

Overview of Our Approach

4

f1

f2

f3

f4

4© Find remaining functions using Connected Components Analysis,
analyze control-flow to find entry points

Compiler-Agnostic Function Detection in Binaries 10 of 19

Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

O0 O1 O2 O3

f-s
co

re

gcc-5.1.1 x86

Nucleus
Dyninst 9.1.0

BAP/ByteWeight 0.9.9
IDA Pro 6.7

C

C++

O0 O1 O2 O3

gcc-5.1.1 x64

O0 O1 O2 O3

clang-3.7.0 x86

O0 O1 O2 O3

clang-3.7.0 x64

O0 O1 O2 O3

Visual Studio '15 x86

O0 O1 O2 O3

Visual Studio '15 x64

Function Start Detection

• Overall average F-score of 0.96 for SPEC CPU 2006 (similar for
servers)

• Stable performance across compiler/platform/optimization level

• Main improvement over others: higher recall (fewer FNs)

Compiler-Agnostic Function Detection in Binaries 11 of 19

Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

O0 O1 O2 O3

f-s
co

re

gcc-5.1.1 x86

Nucleus
Dyninst 9.1.0

BAP/ByteWeight 0.9.9
IDA Pro 6.7

C

C++

O0 O1 O2 O3

gcc-5.1.1 x64

O0 O1 O2 O3

clang-3.7.0 x86

O0 O1 O2 O3

clang-3.7.0 x64

O0 O1 O2 O3

Visual Studio '15 x86

O0 O1 O2 O3

Visual Studio '15 x64

Function Boundary Detection

• Overall average F-score of 0.90 for SPEC CPU 2006

• Even better for C-only server tests (average F-score 0.97)

• Again, more stable than other approaches

• Best alternative: IDA Pro, average F-score of 0.84

Compiler-Agnostic Function Detection in Binaries 12 of 19

Evaluation

More Results

• In-depth analysis of results (including FPs/FNs) in paper

• Most complex cases handled correctly (non-contiguous functions,
multi-entry functions, . . .)

• Main problematic case: tail calls

Compiler-Agnostic Function Detection in Binaries 13 of 19

Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 10000 100000 1x106

ru
nt

im
e

(s
)

instructions

Nucleus
Dyninst 9.1.0

IDA Pro 6.7
BAP/ByteWeight 0.9.9

Runtime
• On par with fastest alternatives

Compiler-Agnostic Function Detection in Binaries 14 of 19

Applicability to Malware Analysis

Resistance to Obfuscation
• Although this talk is in the Malware session, we do not explicitly

target malware

• That said, our approach is agnostic of some basic obfuscation
approaches

• Instruction-level polymorphism
• Mangling of function prologues/epilogues
• Some control flow obfuscations (e.g., converting direct calls to

indirect, branching functions, . . .)

• But we make no promises for arbitrary obfuscations!

Compiler-Agnostic Function Detection in Binaries 15 of 19

Issues with Evaluation of Machine Learning Approaches

Performance Discrepancies

• During our evaluation, noticed far lower performance for
ByteWeight than previously reported (Bao et al. 2014)

• Mean F-score 0.32 points lower than expected

• Observation persists for gcc (v4.7–v5.1), clang, and Visual
Studio

• Upon closer inspection, discovered issues with test suite used to
evaluate all major machine learning-based function detection
work (Bao et al. 2014 and Shin et al. 2015)

Compiler-Agnostic Function Detection in Binaries 16 of 19

Issues with Evaluation of Machine Learning Approaches

Test Suite Issues
• Both Bao et al. and Shin et al. use ten-fold cross-validation to

evaluate their work

• Partition test suite into training set (BT , 90% of binaries) and
evaluation set (BE)

• Repeat ten times such that each binary is in BE exactly once

• Crucial to ensure sufficient variation in test suite to prevent
overfitting!

Compiler-Agnostic Function Detection in Binaries 17 of 19

Issues with Evaluation of Machine Learning Approaches

Test Suite Issues
• Linux test suite used by Bao et al. and Shin et al. consists of
coreutils (106 binaries), binutils (16 binaries), and
findutils (7 binaries)

• Average coreutils binary shares 54% of its functions with all
other coreutils binaries

• Average coreutils binary shares 94% of its functions with at
least one other coreutils binary

• For the average coreutils binary in BE , at least 86% of its
functions are expected to occur in BT

• Large degree of overfitting in evaluation of machine
learning approaches, re-evaluation needed

Compiler-Agnostic Function Detection in Binaries 18 of 19

Conclusion

• We introduced a novel compiler-agnostic function detector

• No maintenance/learning phase required

• More accurate results than existing approaches

• Inherent support for complex cases

• Available open source:
https://www.vusec.net/projects/function-detection/

• Features export to IDA Pro → easy to use in real-world setting

Compiler-Agnostic Function Detection in Binaries 19 of 19

https://www.vusec.net/projects/function-detection/

