Compiler-Agnostic Function Detection in Binaries

Dennis Andriesse!, Asia Slowinska, Herbert Bos'

TVrije Universiteit Amsterdam

EuroS&P 2017



Introduction

Disassembly in Systems Security

Disassembly is the backbone of all binary-level systems security work
(and more)

e Control-Flow Integrity
e Automatic Vulnerability/Bug Search
e Lifting binaries to LLVM/IR (e.g., for reoptimization)

Malware Analysis

Binary Hardening

Binary Instrumentation

Compiler-Agnostic Function Detection in Binaries 1 of 19



Introduction

Results from Previous Work

Function detection currently the main disassembly challenge
e Even function start detection yields many FPs/FNs (20%-+)
e Complex cases: non-standard prologues, tailcalls, inlining, ...

e Binary analysis commonly requires function information

gcee-5.1.1 x86 gce-5.1.1 x64 clang-3.7.0 x86 clang-3.7.0 x64 Visual Studio '15 x86 Visual Studio '15 x64

angrd6.1.4
BAP099 O
ByleWeight 09.9  ©
40 ~ Dyninst 9.1.0 X
Hopper 3.11.5
IDAPr067 O
Jakstab 0.8.4 K

% correct (geometric mean)

SPEC (C) ——
SPEC (C++) ="~

0L L L L L L L L L L L L L L L L L L L L L L L L

o0 01 02 03 o0 o1 02 03 o0 o1 02 03 o0 o1 02 03 o0 o1 02 03 o0 o1 02 03

Figure: Correctly detected function start addresses

Compiler-Agnostic Function Detection in Binaries 2 of 19



Introduction

Function Detection: False Negative

Listing: False negative indirectly called function for IDA Pro 6.7 (gcc
compiled with gcc at 03 for x64 ELF)

6caf10 <ix86_fp_compare_mode>:
6caf10: mov 0x3f0dde(rip),%eax
6caf16: and $0x10,%eax
6caf19: cmp $0x1,%eax
6caflc: sbb Yeax,leax
6cafle: add $0x3a,’%eax
6caf2l: retq

Compiler-Agnostic Function Detection in Binaries 3 of 19



Introduction

Function Detection: False Positive

Listing: False positive function (shaded) for Dyninst (perlbench
compiled with gcc at 03 for x64 ELF)

46b990 <Perl_pp_enterloop>:
[...]
46bal2: ja 46bb50 <Perl_pp_enterloop+0x1c0>
46ba08: mov Y%rsi,f%rdi
46bal0b: shl %cl,%rdi

46bale: mov %rdi,%hrcx

46ball: and $0x46, hecx

46bal4d: je 46bb50 <Perl_pp_enterloop+0x1c0>
[...]

46bb47: pop hri2
46bb49: retq
46bb4a: nopw 0x0 (%rax,¥%rax,1)

46bb50: sub  $0x90,%rax |

Compiler-Agnostic Function Detection in Binaries 4 of 19



Current Approaches

Signature-Based Function Detection

e Most current approaches scan for prologue/epilogue signatures

e IDA Pro, Dyninst, ByteWeight (Bao et al. 2014), (Shin et al.
2015)

e Error-prone: sigs may be missing/optimized away

e Non-scalable: new sigs needed for every compiler
version/platform

e Even machine learning approaches need continuous retraining

Compiler-Agnostic Function Detection in Binaries 5 of 19



Overview of Our Approach

Compiler-Agnostic Function Detection

e We propose a signature-less approach based on structural
analysis of the Control-Flow Graph (CFG)

e Basic premise: Weakly Connected Components Analysis
e Compiler-agnostic: no training/maintenance needed

Able to detect all basic blocks of a function

Inherent support for corner cases such as non-contiguous
functions

Compiler-Agnostic Function Detection in Binaries 6 of 19



Overview of Our Approach

(D Disassemble binary and generate interprocedural CFG (linear
disassembly + switch/inline data detection)

Compiler-Agnostic Function Detection in Binaries 7 of 19



Overview of Our Approach

(@ Hide edges e € F.q J

Compiler-Agnostic Function Detection in Binaries



Overview of Our Approach

(3 Locate directly called entry points and expand functions by
following control flow (ignoring direction) J

Compiler-Agnostic Function Detection in Binaries 9 of 19



Overview of Our Approach

® Find remaining functions using Connected Components Analysis,
analyze control-flow to find entry points J

Compiler-Agnostic Function Detection in Binaries 10 of 19



Evaluation

gce-5.1.1 x86 gee-5.1.1 x64 clang-3.7.0 x86 clang-3.7.0 x64 Visual Studio '15 x86 Visual Studio '15 x64

Nucleus O
Dyninst9.1.0 X
BAP/ByteWeight 0.9.9 O
0.2 IDAPr067 O

o0 o1 02 03 00 o1 02 03 o0 o1 02 03 o0 o1 02 03 00 o1 02 03 o0 o1 02 03

Function Start Detection
e Overall average F-score of 0.96 for SPEC CPU 2006 (similar for
servers)

e Stable performance across compiler/platform /optimization level

e Main improvement over others: higher recall (fewer FNs)

Compiler-Agnostic Function Detection in Binaries 11 of 19




Evaluation

gee-5.1.1 x86 gee-5.1.1 x64 clang-3.7.0 x86 clang-3.7.0 x64 Visual Studio ‘15 x86 Visual Studio 15 x64
_ el 2 _ -~
S8<-0
3
< o
\ To—
i ~
. 60
x\& - - @inimg
Nucleus O oo
Dyninst9.1.0 X No—0 2o
BAP/ByteWeight 0.9.9 < 6. —o 4 o—
02 IDAP067 O | — - - Z - , - - - - -
¥
Cor ===
P —— L L L L L
00 o1 02 03 00 o1 02 o3 [el1] o1 02 03 00 o1 02 03 00 o1 02 o3 [el1] o1 02 03

Function Boundary Detection
e Overall average F-score of 0.90 for SPEC CPU 2006

e Even better for C-only server tests (average F-score 0.97)

e Again, more stable than other approaches
e Best alternative: IDA Pro, average F-score of 0.84

Compiler-Agnostic Function Detection in Binaries 12 of 19




Evaluation

More Results

e In-depth analysis of results (including FPs/FNs) in paper

e Most complex cases handled correctly (non-contiguous functions,
multi-entry functions, ...)

e Main problematic case: tail calls

Compiler-Agnostic Function Detection in Binaries 13 of 19



Evaluation

160 T Ty T
Nucleus ——
140 - Dyninst 9.1.0 — "'~ N
IDAPro6.7 -~ - - "
120 - BAP/ByteWeight 0.9.9 — =~ i

runtime (s)
(2] © 5
o o o

T T T

N
o

T
'

1000 10000 100000 1x108
# instructions

e On par with fastest alternatives

Compiler-Agnostic Function Detection in Binaries 14 of 19



Applicability to Malware Analysis

Resistance to Obfuscation

e Although this talk is in the Malware session, we do not explicitly
target malware

e That said, our approach is agnostic of some basic obfuscation
approaches

e |nstruction-level polymorphism

e Mangling of function prologues/epilogues

e Some control flow obfuscations (e.g., converting direct calls to
indirect, branching functions, ...)

e But we make no promises for arbitrary obfuscations!

Compiler-Agnostic Function Detection in Binaries 15 of 19



Issues with Evaluation of Machine Learning Approaches

Performance Discrepancies

e During our evaluation, noticed far lower performance for
ByteWeight than previously reported (Bao et al. 2014)

e Mean F-score 0.32 points lower than expected
e Observation persists for gcc (v4.7-v5.1), clang, and Visual
Studio

e Upon closer inspection, discovered issues with test suite used to
evaluate all major machine learning-based function detection
work (Bao et al. 2014 and Shin et al. 2015)

Compiler-Agnostic Function Detection in Binaries 16 of 19



Issues with Evaluation of Machine Learning Approaches

Test Suite Issues

e Both Bao et al. and Shin et al. use ten-fold cross-validation to
evaluate their work

e Partition test suite into training set (B, 90% of binaries) and
evaluation set (Bg)

e Repeat ten times such that each binary is in Bg exactly once

e Crucial to ensure sufficient variation in test suite to prevent
overfitting!

Compiler-Agnostic Function Detection in Binaries 17 of 19



Issues with Evaluation of Machine Learning Approaches

e Linux test suite used by Bao et al. and Shin et al. consists of
coreutils (106 binaries), binutils (16 binaries), and
findutils (7 binaries)

e Average coreutils binary shares 54% of its functions with all
other coreutils binaries

e Average coreutils binary shares 94% of its functions with at
least one other coreutils binary

e For the average coreutils binary in B, at least 86% of its
functions are expected to occur in By

e Large degree of overfitting in evaluation of machine
learning approaches, re-evaluation needed

Compiler-Agnostic Function Detection in Binaries 18 of 19



Conclusion

We introduced a novel compiler-agnostic function detector

No maintenance/learning phase required

More accurate results than existing approaches

Inherent support for complex cases

Available open source:
https://www.vusec.net/projects/function-detection/

Features export to IDA Pro — easy to use in real-world setting

Compiler-Agnostic Function Detection in Binaries 19 of 19


https://www.vusec.net/projects/function-detection/

