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Abstract

Botnets have traditionally used centralized architectures for command and con-
trol. In such architectures, a relatively small number of centralized servers is used to
command the bots. Centralized botnet architectures are straightforward to deploy,
but relatively easy to take down by disabling the command and control servers. In an
effort to increase the resilience of their botnets, malware creators have begun to im-
plement peer–to–peer command and control architectures. In peer–to–peer botnets,
rather than relying on centralized command servers, bots cooperate to spread com-
mands amongst themselves. This lack of centralized command and control servers
potentially makes peer–to–peer botnets very difficult to disable, but the exact degree
of resilience greatly varies depending on the communication model and architecture
of each botnet. In this thesis, we analyze and compare the resilience of the major
peer–to–peer botnet threats to date. Additionally, we present the results of our re-
verse engineering analysis and takedown attempt against Zeus, a novel and previously
undocumented peer–to–peer botnet.
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Chapter 1

Introduction

1.1 Context and motivation

Traditional botnets are controlled via central-
ized architectures. We refer to the individuals
controlling a botnet as botmasters. Most com-
monly, traditional centralized bots receive their
commands via IRC chat channels, or download
commands from HTTP servers. Any channel
used to command a botnet is referred to as a
command and control (C&C) channel.

Although centralized C&C architectures are
quite easy for botmasters to deploy, they are
also relatively easy to disable by taking down
the centralized C&C servers, often through le-
gal action or blacklisting approaches. If a bot-
net’s C&C servers are disabled, the botnet is
rendered useless to the botmasters. Multiple
centralized botnets have been successfully dis-
abled through the takedown of their centralized
C&C servers [1].

To overcome the vulnerability of central-
ized C&C servers, botnets using peer–to–peer
(p2p) architectures are becoming increasingly
popular among malware creators. Botnets us-
ing such architectures can be very difficult to
attack, due to their decentralized nature. How
resilient a p2p botnet is depends on the com-
munication model and architecture it uses, but
well designed p2p networks can be extremely
resilient even when confronted with many dis-
abled or poisoned bots [2].

Several p2p botnets have appeared in the
wild already. Some of these have been success-
fully taken down, but others remain quite re-
silient. Most notably, the Sality p2p botnet has
operated largely undisturbed since 2008 [3]. A
number of theoretical studies have shown that

future p2p botnets could become even more re-
silient than those seen in the wild so far [4, 5].

In this thesis, we analyze and compare
the resilience of the major peer–to–peer botnet
threats to date. To supplement our comparison,
we present the results of our reverse engineering
analysis and takedown attempt against Zeus, a
novel and previously undocumented peer–to–
peer botnet.

1.2 Structure of this thesis

In Chapter 2, we provide an overview of the
major p2p botnet threats to date. For each of
the botnets discussed, we also review any doc-
umented vulnerabilities.

As an in–depth study of a modern p2p bot-
net, Chapter 3 presents the results of our re-
verse engineering analysis of Zeus. The Zeus
p2p botnet first appeared around October 2011,
and our reverse engineering study is the first to
evaluate it in detail.

We also describe the results of a first take-
down attempt against the Zeus p2p botnet,
which we executed in April and May of 2012.
These results are described in Chapter 4.

Chapter 5 provides a comparative analysis
of the resilience of the major p2p botnets to
date. We identify which botnets are most suc-
cessful in the wild, and derive several character-
istics that contribute to their success. Further-
more, we estimate the resilience of each of the
compared botnets to peerlist poisoning, one of
the most promising and generalized attack vec-
tors against fully decentralized p2p botnets.

Chapter 6 discusses related work. Finally,
we present our conclusions in Chapter 7.
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Chapter 2

An Overview of Peer–to–Peer Botnets

In this chapter, we provide an overview of
the most significant p2p botnet threats to date.
The botnets are described in order of the dates
at which they were first seen in the wild. For
each botnet, we briefly describe the most rel-
evant aspects of its architecture and commu-
nication model. Additionally, we review each
botnet’s documented vulnerabilities, if any.

2.1 Storm

Storm is a p2p bot which first appeared in Jan-
uary 2007 [6]. The Storm botnet was mainly
used for spamming, and was active until De-
cember 2008, after which it fell into disuse [7].
At its peak, the Storm botnet is estimated to
have contained around 80.000 bots [8].

Communication protocol

Storm is based on Overnet, a Kademlia imple-
mentation [9]. Overnet was originally designed
for the eDonkey file sharing application. In
2006, following legal issues, the eDonkey cre-
ators agreed to cease their operations, and the
eDonkey application was discontinued. How-
ever, the Overnet network remained active and
in use by alternative file sharing clients. The
Storm botnet later used this remaining Over-
net network to bootstrap its operations.

In what follows, we provide a brief overview
of how Storm bots communicate using the
Overnet protocol. The information provided
here is based on the works of Porras et al. [6]
and Holz et al. [8].

Storm communicates using the binary Over-
net protocol over UDP. Each bot uses a ran-

dom high–order UDP port for communication.
Storm Overnet packets can be distinguished
from other Overnet packets by their network
identifier 0xE3, which is present in the header
of each transmitted packet.

Each Storm bot has a randomly generated
128 bit identifier, created when Storm is first
run. This identifier is used to compute how
“close” a particular bot is to a given key. The
distance between two identifiers or keys is deter-
mined using the Kademlia XOR–metric. The
Kademlia XOR distance d between two keys x

and y is computed as d = x ⊕ y, where d is
interpreted as an integer.

Storm bots contain hardcoded lists of 200
to 900 bootstrap peers. New Storm bots make
themselves known in the network by sending
Overnet PUBLICIZE packets to their bootstrap
peers, causing the bootstrap peers to consider
them for addition to their peerlists.

Bots organize their peerlists into 128 “buck-
ets”, where bucket i, with 0 ≤ i < 128, contains
peers with distance 2i ≤ d < 2i+1. Each bucket
can contain up to 20 peers. Since the numeric
distance between 2i and 2i+1 grows with in-
creasing i, bots store many peers close to them-
selves, while they store relatively few peers far
from themselves. The peers in each bucket are
kept sorted by the time of last contact.

Storm bots learn about new peers through
incoming PUBLICIZE packets, and by send-
ing Overnet CONNECT REQUEST packets to other
peers. In response to a CONNECT REQUEST, a
peer returns a list of 20 other peers close to its
own identifier.

Bots which learn about new peers update
their peerlists as follows. If the identifier of the
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new peer is already known, then the IP address
and port for that peer are updated and the peer
is given a fresh timestamp. Else, if the bucket
that the new peer belongs in is not yet full,
then the new peer is added to the peerlist. If
the bucket is full, then the oldest peer from the
bucket is sent a PING message to test it for re-
sponsiveness. If it is still responsive, then the
new peer is discarded and the old peer’s times-
tamp is updated. If the old peer is no longer
responsive, then it is removed and the new peer
is added.

Storm bots locate commands by searching
for special keys in the network. The keys un-
der which commands can be located are com-
puted using a time–based algorithm. Storm
bots search for a key in the network by sending
ROUTE REQUEST packets containing the search
key to the peers they know that are closest to
the key. These peers then return ROUTE REPLY

messages containing the peers they know that
are close to the key being searched for. These
new peers are in turn contacted with ROUTE

REQUEST messages to find peers increasingly
close to the search key. This process contin-
ues iteratively until a ROUTE REPLY is received
which contains peers further away from the key
than the peer returning the reply, in which case
the key is found.

Storm originally shared the Overnet net-
work with benign file sharing clients. In Oc-
tober 2007, the Storm authors modified Storm
to use an XOR encryption algorithm on its
messages, effectively separating the Storm bots
from the original Overnet network into an en-
crypted Overnet network consisting exclusively
of Storm bots.

Vulnerabilities

Storm bots retrieve commands by looking up
command keys. These are Overnet identifiers
periodically generated by each Storm bot using
a time–based algorithm. The Storm command
key algorithm generates 32 command keys per
day, which each Storm bot can use to find the
latest commands [6, 8]. Since the Storm bot-
masters also know the command key algorithm,
they can publish commands under the correct
keys during each time period.

The main weakness of Storm lies in the fact
that anyone who successfully reverses the com-

mand key generation algorithm can determine
in advance where the commands of the next
day will be published. Because the published
commands are not authenticated by the Storm
bots, attackers can overwrite any commands as
soon as they are published, rendering the Storm
botmasters unable to command their botnet [8].

2.2 Sality

The Sality malware family has been around for
a long time. It started out with a simple data
stealing virus in 2003. Since then, Sality has de-
veloped into a sophisticated p2p botnet, which
first appeared in January 2008. The latest ver-
sions of Sality are mainly intended to drop ad-
ditional malware [3].

The Sality p2p botnet has seen several ma-
jor updates. Currently, two Sality versions are
still active. The largest network is formed by
Sality v3, which stems from 2009. Its size is cur-
rently estimated at around 200.000 bots. Sality
v4 is very similar to the v3 variant, but fixes
a critical vulnerability, which we will discuss
later. The v4 Sality network is growing, and
is expected to eventually become the dominant
Sality network [3].

As Sality v3 and Sality v4 are very similar,
we discuss them both in the rest of this section.

Communication protocol

The information described here is based on the
Symantec technical report on Sality [3]. All de-
tails discussed apply to both Sality v3 and Sal-
ity v4, unless noted otherwise.

The Sality p2p network uses a simple but
highly robust custom binary protocol. Mes-
sages are exchanged over UDP, and are en-
crypted with RC4, using the first 4 bytes of
the message payload as the key. Bots at-
tach themselves to a pseudorandomly generated
port, based on the computer name. The Sal-
ity network is unstructured, and bots exchange
commands in a gossip–like fashion. Commands
are exchanged in the form of signed URL packs,
which contain URLs where the bots are to
download additional malware. In addition to
the exchange of these URL packs, Sality v4 is
able to exchange signed binaries via the p2p
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network, eliminating the need for centralized
hosting of the binaries.

Sality bots establish initial contact with the
network through a hardcoded list of bootstrap
peers, which are copied to a local peerlist when
Sality is first executed. The local peerlist has a
maximum size of 1000 peers.

Sality peerlists contain an identifier, IP ad-
dress and port for each known peer, as well
as the time the peer was last contacted, and
a per–peer goodcount value. The goodcount
value is especially interesting. It is an integer
value which indicates how trustworthy a peer
has proven to be in the past, so that bad or
fake bots can be recognized and removed from
the peerlist. Goodcount values are maintained
locally by each peer, but are never exchanged
over the p2p network.

Sality identifiers are plain integers. Sality
bots start out with their identifiers set to zero,
and are assigned identifiers later by other bots,
depending on whether or not they are exter-
nally reachable.

Sality bots contact all their known peers ev-
ery 40 minutes. A Sality bot initiates commu-
nication with another bot by issueing a pack

exchange query, which contains the sequence
number of the current URL pack that the re-
questing bot has. If the remote peer does not
respond to the query, or replies with a bad re-
sponse, then the requesting peer decrements the
goodcount value of the remote peer and ter-
minates communication with it. If the remote
peer returned a good reply, its goodcount is in-
cremented. Peers with goodcounts below −30

are removed from the peerlist if the peerlist
length is at least 500.

If the remote peer is responsive and has a
newer URL pack than the requesting peer, it
returns this URL pack to the requesting peer.
Otherwise, it returns an ack message, indicat-
ing whether its URL pack sequence number is
equal to or lower than that of the requesting
peer. If the requester sees that the remote peer
has an older URL pack sequence number, then
it sends its own URL pack to the remote peer.

Next, if the requesting peer notices that its
identifier is still set to zero, it requests an identi-
fier from the remote peer. The remote peer then
attempts to contact the requesting peer using
a pack exchange query. If this succeeds, the

remote peer concludes that the requesting peer
is externally reachable, and returns an identi-
fier ≥ 16.000.000 to the requester. In this case,
the requesting peer is also added to the remote
peer’s peerlist. Since this is the only way for
new peers to make it into other peers’ peerlists,
Sality peerlists contain only externally reach-
able peers. If the requesting peer turns out
not to be externally reachable, it is assigned
an identifier < 16.000.000.

Finally, if the requesting peer has a peerlist
shorter than 980 peers, it requests an additional
peer from the remote peer. The remote peer
returns a single peer with positive goodcount,
chosen randomly from its peerlist.

Vulnerabilities

The Sality v3 network has a serious vulnerabil-
ity. Namely, while the URL packs exchanged
via the p2p network are signed, the binaries
downloaded from the URLs provided in these
URL packs are not signed. This means that if
an attacker is able to take over one of the do-
mains exchanged in the URL packs, it is possi-
ble to make the Sality bots download a binary
which will disinfect them. This vulnerability
has been fixed in Sality v4, which uses signed
binaries as well as signed URL packs [3].

2.3 Waledac

Waledac is a p2p bot which first appeared in
April 2008. Analysis suggests that it is the
successor of the Storm bot. The timing of
Waledac’s arrival supports this idea, since the
Storm botnet fell into disuse in late 2008 [10].

Waledac is meant mainly to send spam and
drop additional malware [11]. At its prime, the
Waledac botnet is estimated to have contained
around 165.000 bots [10]. The Waledac botnet
was disabled in February 2010.

Communication protocol

The information described in this section is
based on the analyses by Stock et al. [10], Tene-
bro [11] and Sinclair et al. [12].

Waledac uses a custom XML–based pro-
tocol. Bots communicate using HTTP over
TCP. Apart from the plaintext HTTP headers,
Waledac messages are encrypted using 128 bit
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AES. The AES key is determined through an
RSA encrypted key exchange.

Each Waledac bot generates an RSA pub-
lic and private key pair when it is first run,
and uses the generated private key to create a
self–signed X.509 certificate. When a Waledac
bot wishes to establish encrypted communica-
tion with another peer, it sends its self–signed
certificate to this peer. The remote peer then
uses the public key from the certificate it re-
ceived to send back an RSA encrypted AES key.
This AES key is then used to encrypt further
communication between the two peers.

Waledac peerlists contain an IP address,
port, time of last contact, and 20 byte iden-
tifier for each peer. Only externally reachable
bots are kept in the peerlists of other bots.
These externally reachable bots are referred
to as repeaters. Bots check if they are exter-
nally reachable during their initial bootstrap-
ping phases, and if not, they do not attempt to
propagate themselves into the peerlists of other
bots. Each Waledac bot contains a hardcoded
list of 50 initial peers, which are used for boot-
strapping onto the p2p network.

To obtain new peers, Waledac bots peri-
odically send peerlist exchange requests to
the peers already in their peerlists. During a
peerlist exchange, both bots involved in the
exchange select 200 random peers from their
peerlists, and send these to the other bot. Both
bots then incorporate the new peers into their
peerlists, discarding older entries in case the
maximum peerlist size of 1000 is exceeded. As
a backup measure, Waledac bots are capable of
downloading signed peerlists via a hardcoded
URL hosted in a fast–flux network run by the
Waledac bots themselves.

Waledac is not purely p2p–based. Instead,
it relies on a relatively small number of back-
end servers which are used to spread commands
to the bots. A bot trying to retrieve new com-
mands contacts a repeater peer, which in turn
relays the command request to one of the back-
end servers. The reply from the backend server
is then routed back to the requesting bot via
the repeater peer. Thus, above the p2p layer of
Waledac, there is a centralized core, which the
p2p layer serves to conceal.

Vulnerabilities

Although Waledac uses a p2p protocol to ex-
change lists of repeaters between the bots, it
relies on a small number of backend servers to
serve new commands to the network through
the repeaters. Effectively, Waledac’s p2p layer
is just an obfuscation layer to conceal its cen-
tralized core.

In February 2010, Waledac was taken down
by Microsoft1. The attack involved disabling
the domains of Waledac’s backend servers
through legal action, while simultaneously poi-
soning the peerlists of the Waledac bots to
prevent them from updating to new domains.
A detailed description of this attack strategy
against Waledac is available in [12]. The at-
tack made it impossible for the botmasters to
deliver new commands to Waledac, effectively
rendering the botnet unusable.

2.4 Conficker C

Conficker C is the first Conficker variant to con-
tain p2p functionality. To this day its exact
purpose remains unknown. Conficker C first
appeared in February 2009, and at its peak the
Conficker C network contained around 200.000
bots. It was never really taken down, and is
estimated to still contain around 25.000 bots2.

Communication protocol

The information in this section is based on the
technical report by Porras et al. [13].

Conficker C uses a custom binary protocol.
It uses both UDP and TCP sockets. The mes-
sage types exchanged over both types of socket
are very similar to each other, and are en-
crypted using RC4. Conficker uses a Domain
Generation Algorithm (DGA) as its backup
channel, which it can use to download signed
binary updates.

Conficker mainly uses its p2p network to up-
grade itself to the latest binary version. When
another Conficker bot is found, a connection is
established to this newly found bot. The initia-
tor of the connection advertises its current bi-
nary version to the remote peer. If the remote
peer has an inferior binary version, it downloads

1
http://blogs.technet.com/b/microsoft_on_the_issues/archive/2010/02/24/cracking-down-on-botnets.aspx

2
http://www.confickerworkinggroup.org/wiki/pmwiki.php/ANY/InfectionTracking#toc8
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the binary of the initiator of the connection. If
the remote peer has a superior binary version,
then it sends its binary to the initiator of the
connection. If both peers have the same binary
version, then the connection is terminated.

Both the binaries and the version num-
bers exchanged by Conficker bots are digitally
signed using RSA, meaning that attackers can
not insert rogue binaries into the Conficker net-
work. The exchange of new binaries is the only
means of C&C used by Conficker.

An interesting aspect about Conficker C
bots is that they do not contain any hardcoded
bootstrap peers. Instead, bots find new peers
by scanning the Internet for other Conficker in-
fections. In addition, Conficker has the ability
to exchange peers by piggybacking a variable
number of peers with its messages. Conficker
peerlist entries contain an IP address, port, and
an 8 byte identifier for each peer. Peers gen-
erate their identifiers randomly when they are
first run.

A peer found via scanning is added to the
scanning peer’s peerlist only if it has the same
binary version as the scanning peer. A max-
imum of 2048 peers are stored in Conficker’s
peerlist. If the peerlist is full and a new peer
is discovered, then the oldest entry from the
peerlist is overwritten with the new peer.

While scanning the Internet for other peers,
Conficker probabilistically adds existing peers
from its peerlist to its scanning targets. This is
the only means for Conficker to recontact peers
already in its peerlist.

2.5 ZeroAccess

ZeroAccess is a p2p botnet which has been
around since June 2009. It is used for dropping
malware, and is currently estimated to contain
around 150.000 bots.

Communication protocol

The information in this section is based on the
ZeroAccess technical report by Wyke [14].

ZeroAccess uses a custom binary protocol,
which it runs over TCP. Messages are encrypted
using RC4 with a hardcoded key. The sole pur-
pose of the p2p network is to drop new binaries,

and these binaries form the only means of C&C
used by ZeroAccess.

ZeroAccess bots contain hardcoded peerlists
of 256 bootstrap peers. ZeroAccess peerlists
have a maximum length of 256, so that each
bot starts out with a fully saturated peerlist.

Each peer in a ZeroAccess peerlist has an
IP address, a port, and a time of last contact,
but no identifier. ZeroAccess bots periodically
traverse their peerlists, attempting to establish
a TCP connection to each of the peers.

When ZeroAccess successfully connects to
another peer, it first requests a peerlist from
that peer. The remote peer then returns its en-

tire peerlist of length 256. The requesting peer
merges the received peerlist into its own peerlist
by overwriting old peers with newer ones as
much as possible. The fact that ZeroAccess
bots accept so many new peers at once, and
trust the timestamps provided by the respond-
ing peers, means that the peerlists of ZeroAc-
cess bots can be poisoned quite effectively. To
our knowledge, however, such an effort has not
yet been made.

After downloading a new peerlist from a re-
mote peer, ZeroAccess requests a list of binaries
that the remote peer currently has available for
downloading. If the requesting peer finds that
the remote peer has one or more new binaries
available, it downloads these binaries from the
remote peer.

The binaries exchanged by ZeroAccess are
signed using RSA, but it should be noted that
a 512 bit key is used. This is considered rather
short by today’s standards. It is conceivable
that this 512 bit key could be factored, so that
rogue binaries could be injected into the Ze-
roAccess network.

2.6 Hlux

Hlux is the successor of the Waledac p2p bot-
net. It first appeared in December 2010, a
few months after the Waledac botnet was taken
down. Similar to the Waledac botnet, spread-
ing spam is one of the main activities of Hlux.
Additionally, Hlux is used for Denial of Service
attacks and data theft.

Hlux was taken down through a poisoning
effort by Kaspersky Labs in March 2012, but

3
http://www.securelist.com/en/blog/655/Kelihos_Hlux_botnet_returns_with_new_techniques
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has since restarted in the form of a fresh Hlux
network3. The original Hlux network is esti-
mated to have contained around 49.000 bots,
while the respawned Hlux network currently
contains around 130.000 bots.

Communication protocol

Our description of Hlux is based on the analysis
of Werner [15].

Hlux uses a custom binary protocol over
TCP. It encrypts its messages using three lay-
ers of encryption. Messages are first encrypted
with Blowfish, then with Triple DES, and fi-
nally with another layer of Blowfish. Each of
the three stages uses a different key.

Hlux uses an architecture similar to that
of Waledac. Just as in Waledac, the network
is ultimately controlled by a set of centralized
servers, which we refer to as control servers.
Externally reachable Hlux bots forward com-
mand requests from other bots to these control
servers. This means that just as in Waledac,
the Hlux p2p network is largely an obfuscation
layer for the centralized core of the botnet.

Another important function of the Hlux p2p
network is that it allows the botmasters to dy-
namically update the list of control servers in
case any of the control servers are taken down.
Like Waledac, Hlux also uses a set of hardcoded
URLs hosted in its own fast–flux network as a
backup channel.

Hlux bots come with around 200 initial
bootstrap peers. Each bot has a randomly gen-
erated 16 byte identifier. Hlux bots store at
most 500 peers in their peerlists, and keep a
timestamp for each peer, indicating the time of
last contact with that peer.

Whenever an Hlux bot contacts another
bot, it actively pushes a list of its 250 most
recent peers to the remote peer. In turn, the re-
mote peer sends 250 of its peers back to the ini-
tiating peer. Both peers update their peerlists,
keeping the most recent peers, as judged by the
peers’ associated timestamps, which are also
sent over the network. It should be noted that
Hlux checks if a peer received over the network
does not have a timestamp in the future. If it
does, then this peer is rejected. Without this
check, it would be quite easy to permanently
poison the peerlists of Hlux bots.

Vulnerabilities

In March 2012, a team from Kaspersky Labs
was able to abuse Hlux’s peerlist update mech-
anism to significantly poison the peerlists of all
Hlux bots. This poisoning was facilitated by
the fact that the Hlux protocol allows attack-
ers to actively connect to any Hlux peer, and
then push 250 poisoned peerlist entries to that
peer. By setting a very recent timestamp for
each pushed peer, it is possible to make the
remote peer incorporate most if not all of the
pushed peers into its peerlist, overwriting many
legitimate entries in the process.

By pushing many peerlist entries into the
Hlux network, all of which pointed to a rogue
server operated by Kaspersky, the Kaspersky
Labs team was able to severely disrupt the nor-
mal p2p communications of the Hlux bots. Le-
gitimate Hlux bots were not connected with
each other anymore, but were instead only con-
nected to the rogue Kaspersky server.

At the same time, the Kaspersky team
spread a list of false control server domains
throughout the Hlux network, thereby prevent-
ing the Hlux bots from connecting to the real
command and control servers to retrieve com-
mands and updates.

Hlux’s real control servers were subse-
quently disabled through legal action by Mi-
crosoft, crippling the Hlux botnet further [15].
This combination of poisoning and takedown of
the botnet’s backend control domains is remi-
niscent of the Waledac takedown.

Although the takedown was quite effective
and succeeded in disabling the original Hlux
botnet completely, the Hlux botmasters created
a fresh Hlux botnet only months after the take-
down of the original Hlux.

2.7 Miner

The Miner botnet is named after one of its main
monetization techniques, which involves using
the bots to generate large amounts of a digital
currency called Bitcoin. This activity is known
as Bitcoin mining, hence the name of the bot-
net. Apart from Bitcoin mining, the Miner bot-
net is also used for Denial of Service attacks,
identity theft, and click fraud.

The Miner botnet appeared in August 2011,
and contains 80.000 externally reachable peers.
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An estimation often considered reasonable is
that every 1 in 10 peers in a p2p network is
externally reachable. This would put the to-
tal size of the Miner botnet at around 800.000
peers, but because Miner bots exchange only
externally reachable peers, there is no way to
be certain that this number is correct [16].

Communication protocol

The contents of this section are based on the
Miner analysis by Werner [16].

Miner uses a custom text–based protocol
over HTTP. The Miner protocol is quite simple,
and is mainly meant for spreading new binaries
to the bots. Miner messages are transmitted
without any form of encryption.

Miner bots contain initial peerlists of
around 2000 bootstrap peers. A Miner bot
wishing to contact another peer first probes
that peer on TCP port 62999 to verify that
the remote peer is really part of the Miner bot-
net. All further communication takes place over
HTTP on TCP port 8080.

A Miner bot wishing to download a piece
of information from another bot will issue an
HTTP GET request to that bot. There are a
number of well known resource names which
Miner bots use to access different pieces of in-
formation, such as the remote peer’s peerlist or
the remote peer’s list of binaries.

In response to a peerlist request, a Miner
bot returns a list of the IP addresses of 300 to
800 of its peers. Note that only IP addresses are
returned, without any identifiers or ports. The
latter is not needed, as Miner bots are always
contacted on fixed ports.

Miner peerlists can be arbitrarily long, and
contain only externally reachable peers. By re-
questing its public IP address from another bot,
a Miner bot is able to learn whether or not it
is externally reachable. If it is not, then it will
never advertise itself to be added to another
bot’s peerlist.

Binaries distributed through the Miner net-
work are named with increasing sequence num-
bers. This allows Miner bots to recognize which
files in a remote peer’s file list are new. If a
Miner bot finds that a remote peer has a new
binary available, it issues a GET request for the
new binary to the remote peer. All binaries
distributed through the Miner network are dig-

itally signed to avoid the injection of rogue bi-
naries into the network.

2.8 Zeus

Zeus is the most recent p2p botnet that we
know of. It first appeared in October 2011,
and seems to have developed from the leaked
source code of a centralized variant of Zeus. We
have reverse engineered the Zeus p2p communi-
cation protocol, and attempted a first takedown
against the Zeus p2p botnet.

The results of our Zeus reverse engineer-
ing efforts are described in detail in Chapter 3,
and the results of our takedown attempt against
Zeus are documented in Chapter 4.
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Chapter 3

A Detailed Analysis of Zeus

This chapter describes the results of our re-
verse engineering analysis of Zeus, a p2p botnet
which first appeared in October 2011. Zeus is
a trojan with the main purpose of stealing cre-
dentials from infected hosts. Before the p2p
variant, there have been two major centralized
variants of Zeus. These were sold in the under-
ground community as kits to create customized
botnets. The botnet binaries generated with
these kits were typically distributed via e-mail
campaigns and drive–by downloads.

In May 2011, the source code of the then
most recent of these centralized Zeus variants
was leaked. It appears that the p2p variant
of Zeus was developed from this leaked source
code. In the remainder of this chapter, we focus
only on the p2p mutation of Zeus.

Our reverse engineering results are focused
mainly on the p2p communication model of
Zeus. Assembly listings detailing some of the
Zeus behaviour discussed in this chapter are
listed in Appendix B. Our reversing results are
based on Zeus samples with the following MD5
hashes.

17e808d2eb19818ca21e3eeb8c556c34

8b3cda277fedf923a8ec03fc5da79fc0

8e5e837d2204e1bc6c242d7b74d9f3e9

3.1 Extracting a Zeus binary

Zeus binaries are spread in packed form, so that
they can not be reversed directly. In order to
analyze Zeus, it must first be extracted some-
how. The approach we use to extract Zeus is

based on the observation that Zeus injects itself
into other running processes.

To extract a Zeus binary, we begin by run-
ning Zeus inside a virtual machine. Shortly
after it is started, Zeus will inject itself into
a running process, typically the Windows
explorer.exe process. To tell into which pro-
cess Zeus has injected itself, we wait until we
see a process initiate suspicious network activ-
ity. In the samples we analyzed, the infected
process opens a TCP socket and a UDP socket
after about 5 seconds, and starts listening on
these sockets. Once we know into which pro-
cess Zeus has injected itself, we dump the mem-
ory of the virtual machine. We then analyze
this memory dump using the Volatility Mem-
ory Forensics Platform1.

We use the Volatility malfind plugin2 to
extract the actual Zeus binary from the full
memory dump. The malfind plugin finds in-
jected code inside a memory dump by look-
ing for memory ranges which are marked exe-
cutable, but are not listed in the Windows Pro-
cess Environment Block (PEB). Because nor-
mally loaded executable code is always listed
in the PEB, executable regions not listed there
were likely injected by another process.

Using malfind, we look for an executable
memory region starting with a Windows MZ
header, which marks a Windows binary. In our
memory dumps, the explorer.exe process con-
tains exactly one such region. Dumping this re-
gion yields a Zeus binary suitable for analysis.

Detailed instructions on obtaining a Zeus
binary can be found in Appendix A.

1
http://www.volatilesystems.com/default/volatility

2
http://code.google.com/p/volatility/wiki/CommandReference#Malware_and_Rootkits
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int zeus_xor_encrypt(void ∗src , void ∗dest , int len ) {
i f ( src != dest ) {

memcpy(dest , src , len ) ;
}
for ( int i = 1; i < len ; i++) {

dest [ i ] ^= dest [ i −1];
}
return len ;

}

Figure 3.1: The Zeus network encryption algorithm.

3.2 Zeus communication model

This section describes our reverse engineering
results on the Zeus p2p communication model.
These results were obtained using a combina-
tion of network traffic analysis and static anal-
ysis in IDA Pro.

3.2.1 Overview

Zeus control messages are always sent over
UDP, while TCP can be used for reliable file
transfer. Zeus also supports file transmission
over UDP. Zeus variants differ in which files
they transmit over UDP, and which they trans-
mit over TCP, but newer variants tend to prefer
UDP rather than TCP in most cases. Details
on the message types supported in Zeus can be
found in Section 3.2.4 and Section 3.2.5.

Zeus bots come with a hardcoded initial
peerlist. The samples we analyzed had initial
peerlists containing 50 peers. All peers in the
peerlist are periodically probed to confirm that
they are still alive. If they are not, they are
deleted. If their peerlists grow too small, Zeus
bots may decide to ask other peers for addi-
tional peerlist entries. Zeus bots limit their
peerlists to a maximum of 150 entries. Zeus
stores its peerlist RC4 encrypted in the Win-
dows registry under a pseudorandomly gener-
ated subkey of HKEY_CURRENT_USER.

All Zeus bots are able to periodically down-
load updated binaries and configuration files
from other peers. New binaries and configu-
ration files are pushed into the Zeus network
by the botmasters in order to update the bots
and tweak their behaviour. New binaries con-
tain updated Zeus versions, while configuration
files are used to command the bots. Zeus bots
do not receive commands via C&C messages,

but only via new configuration files. Zeus bots
store their configuration files encrypted using
RC4, with a separate key per bot. An initial
configuration file containing default settings is
hardcoded into each Zeus bot.

Each peer in the Zeus network has an identi-
fier in the form of a randomly generated SHA1
hash, and peers having similar identifiers are
considered “close” to each other. The simi-
larity between peer ID’s is calculated using a
Kademlia–like XOR–metric [9]. Zeus peers use
their identifiers to find peers close to them-
selves, and to be able to recognize known peers
even if they have dynamically changing IP ad-
dresses. Unlike Kademlia peers, Zeus bots use
flat peerlists, and the Zeus architecture is not

a Distributed Hash Table (DHT).

Periodically, some Zeus peers are desig-
nated as proxies. The botmasters push spe-
cial signed packets into the network advertising
these proxy peers. The proxy peers are then
used by other Zeus bots to drop stolen data. It
is possible that Zeus uses a multilayered archi-
tecture, and that the proxies forward dropped
data to a higher layer, but we have not yet con-
firmed this.

Zeus uses a backup network based on a Do-
main Generation Algorithm (DGA). The do-
main generation algorithm generates pseudo-
random domain names based on the current
time and date, which Zeus bots can try to con-
tact should they need to. The botmasters peri-
odically register one or more of these domains,
so that bots in DGA mode eventually success-
fully reach a domain.

Zeus bots activate their DGA when they
find they have an empty peerlist, and thus can
not join the Zeus p2p network. Zeus bots are
able to use the DGA to obtain a fresh peerlist,
so that they can rejoin the p2p network.
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ukn
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ttl
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type
(1B)

session hash (20 bytes)

source hash (20 bytes)















Header

payload + padding
...

Figure 3.2: The basic Zeus network packet structure.

3.2.2 Encryption

Zeus has built–in support for various encryp-
tion algorithms, including RC4. RC4 encryp-
tion is used for encrypting sensitive data stored
by Zeus bots, such as peerlists and configura-
tion files. Additionally, Zeus bots use RC4 to
encrypt binary and configuration file transfers.

Normal Zeus network traffic is only en-
crypted using a simple XOR encryption algo-
rithm. The algorithm works by XORing each
byte of a network packet with the preceding
byte, starting at byte 1 (as byte 0 has no pre-
ceding byte). Decryption is identical, except
that bytes are decrypted in the opposite order
they are encrypted in, starting at the last ci-
phertext byte and moving down to byte 1.

A representation in C of the Zeus network
encryption code is shown in Figure 3.1. An as-
sembly listing showing the XOR algorithm as
it is found in Zeus binaries can be found in Ap-
pendix B.

3.2.3 Packet structure

This section describes the basic structure of
Zeus network messages. In general, Zeus UDP
and TCP messages follow the same structure,
with the exception of TCP file transmission
packets (see Section 3.2.5).

Zeus packets vary in size, but have a min-
imum length of 44 bytes. The first 44 bytes
of each packet form a custom header, while
the remaining bytes form a payload concate-
nated with an amount of padding. The Zeus
packet structure is illustrated in Figure 3.2.
The shaded area at the beginning of the fig-
ure does not represent part of the Zeus packet
structure. It is only used in the figure to align

the fields appropriately. The meaning of each of
the fields shown in Figure 3.2 is detailed below.

ukn (unknown)

The meaning of the first header byte is un-
known. Static analysis shows that this byte is
set to a random value by Zeus. This may sim-
ply be done to avoid leaking information, as the
XOR encryption Zeus uses for network traffic
leaves the first byte of each packet in plaintext
(a result of the fact that the first byte has no
previous byte to be XORed with).

ttl

The ttl field is usually unused, and thus set to
a random or constant value by Zeus, depend-
ing on the specific Zeus variant. However, for
some message types, this field serves as a Time
To Live (TTL) value. To our knowledge, this is
currently only true for messages of type 0x32.
See also Section 3.2.4.

lop (length of padding)

Zeus packets end with a random amount of
padding. The length of padding (LOP) field in-
dicates the number of padding bytes present at
the end of the packet. Zeus bots use this field to
determine the length of the message payload by
subtracting the LOP and the 44 header bytes
from the total packet length.

type

This field indicates the type of the message.
The message type is used to determine the
structure of the payload, and in certain cases
the meaning of some of the header fields, such
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as the ttl field. Valid Zeus message types, and
their corresponding payload structures, are de-
scribed in Section 3.2.4 and Section 3.2.5.

session hash

The session hash is a 20 byte random SHA1
identifier used by Zeus to determine with which
request an incoming reply belongs. When a
Zeus bot sends a request to another bot, it in-
cludes a random session hash in the request
header. The corresponding reply will include
the same session hash in the header, which is
then used by the requesting bot to look up the
original request. If a message with an unknown
session hash arrives, it is discarded, making it
difficult to spoof Zeus replies blindly. Messages
with known session hashes but unexpected type
numbers are also discarded.

source hash

This field contains the 20 byte identifier of the
peer that sent the message. This field mainly
serves for new bots to make themselves known
in the network by pushing their identifier to
other bots (see Section 3.2.6).

payload

This variable length field contains a message
type dependent payload. The payload struc-
tures for all message types are described in Sec-
tion 3.2.4 and Section 3.2.5.

padding

This field contains a random number of padding
bytes. The exact number is specified in the
padding length field of the message header.
Each of the padding bytes is a nonzero ran-
domly generated value. The padding field is
postfixed to the message payload, and serves to
confuse signature–based traffic analysis.

3.2.4 UDP message types

In this section, we discuss how each of the Zeus
UDP message types is used, and how the corre-
sponding payloads are structured. Zeus mainly
uses UDP for control messages, but UDP data
transfer is also possible. Recent Zeus variants

prefer UDP data transfer over TCP data trans-
fer for binary and configuration file downloads,
but not for data drops. The reason for this
may be that binary and configuration files are
signed, while data drops are not. For data
transfers where the signature can be used for
verifying integrity, the use of TCP is redundant.

Version request (type 0x00)

Version request messages are used to request
the current binary and configuration file ver-
sion numbers of other Zeus peers. Version re-
quest messages are sent to determine whether
or not new binary or configuration file updates
are available.

Version requests usually have no payload.
However, sometimes they contain an 8 byte
payload of the form 0x01000000RRRRRRRR,
where each RR represents a random byte and
0x01000000 is a little endian integer contain-
ing the value 1. This payload serves as a marker
which any requesting peer can piggyback with
a version request to indicate that it would like
to receive a type 0x06 proxy reply message (see
Section 3.2.4).

Version reply (type 0x01)

A version reply contains the version numbers
of the binary and configuration files that the
responding peer currently has. The binary ver-
sion number indicates which version of Zeus the
peer is running, while the configuration file ver-
sion number indicates which Zeus configuration
file the peer has. A TCP port number is also
sent to indicate on which port the responding
peer can be reached to download the files via
TCP. Version replies end with 12 random bytes.
The reply structure is shown in Figure 3.3.

0 31

binary version (4 bytes)

config file version (4 bytes)

tcp port (2 bytes)

random (12 bytes)

Figure 3.3: Version reply payload (22 bytes).
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Peerlist request (type 0x02)

Peerlist requests are used to request new peers
from other bots. The requesting peer adds
these new peers to its peerlist, or updates the
IP addresses and ports of peers with already
known identifiers. Zeus peers do not usually
use peerlist requests to learn about new peers.
Instead, they usually obtain new peers by stor-
ing the senders of incoming request messages.
Zeus only sends active peerlist requests if its
peerlist is becoming critically short (less than
25 peers in the samples we analyzed).

The payload of a peerlist request consists of
a 20 byte identifier, followed by 8 random bytes.
The responding peer will return the peers it
knows that are closest to the requested identi-
fier. Zeus peers typically send peerlist requests
containing the identifier of the peer they are
sending the request to. The Zeus peerlist re-
quest structure is illustrated in Figure 3.4.

0 127

identifier (20 bytes)

random (8 bytes)

Figure 3.4: Peerlist request payload (28 bytes).

Peerlist reply (type 0x03)

Peerlist replies contain the 10 peers from the
responding peer’s peerlist which are closest to
the requested identifier from the corresponding
peerlist request. If the responding peer knows
less than 10 peers, then as many peers as possi-
ble are returned. Peerlist replies containing no
peers are also valid.

The payload length for a peerlist reply is
always 450 bytes, large enough to contain ex-
actly 10 peerlist entries concatenated together.
If fewer than 10 peers are returned, the remain-
ing space is padded with null bytes. The re-
sponding peer will never include itself in the
peerlist it returns.

For each returned peer, the payload format
is as shown in Figure 3.5. The ip type field in-
dicates whether the peer is reachable via IPv4
or IPv6. A value of 0 for the ip type field in-
dicates IPv4, while 2 indicates IPv6. The peer
id field contains the identifier of the peer be-
ing returned, and the remaining fields contain

the IP address and port where the peer can be
reached via UDP. If IPv4 is used, the IPv6 fields
are randomized. Similarly, if IPv6 is used, the
IPv4 address is randomized. An interesting de-
tail is that the IPv4 port is not randomized, but
only set to zero. This may be a bug in Zeus.

0 63

ip type
(1B)

peer id (20 bytes)

ipv4 addr (4 bytes) ipv4 port
(2B)

ipv6 addr (16 bytes)

ipv6 port
(2B)

Figure 3.5: Peer struct (45 bytes).

Data request (type 0x04)

UDP data request messages are used to request
binary or configuration file downloads via UDP.
The Zeus UDP data request message structure
is shown in Figure 3.6.

The payload of a UDP data request starts
with a single byte indicating what kind of data
is desired. This byte is set to 1 for a configura-
tion file download, or to 2 for a binary update.
The offset field indicates at which byte the re-
sponding peer should start transmitting data,
and the size field specifies how many data bytes
should be transmitted in the response. The size
field is typically set to 1360 bytes. For large
downloads, it is typical to see multiple type
0x04/0x05 messages exchanged in sequence.

0 31

type (1B)

offset (2 bytes) size (2 bytes)

Figure 3.6: Data request payload (5 bytes).

Data reply (type 0x05)

UDP data replies contain the data requested by
UDP data requests. UDP data replies always
contain 1360 data bytes, except if there is no
more data available. If a Zeus peer downloading
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a file receives a data reply containing less than
1360 data bytes, it assumes that this is the last
data block of the file, and ends the download.
If a data reply takes longer than 5 seconds to
arrive, the download is also aborted. The max-
imum total size of any download is 10MB. This
limit is enforced by the receiver of the data.

Each UDP data reply starts with a 4 byte
file identifier, for which any value is valid as
long as all data replies belonging to the same
file transmission use the same identifier. The
file identifier is followed by the data requested
in the previous data request packet. See also
Figure 3.7.

The transmitted files end with a 256 byte
RSA signature of the MD5 hash of the plain-
text data, and are doubly encrypted with Zeus’s
XOR encryption algorithm, followed by an RC4
encryption layer using a hardcoded key. Before
applying a downloaded binary or configuration
file update, Zeus compares the version number
contained in the update file with its current ver-
sion number. If the new version number is not
strictly higher than the current version number,
the update is not applied. This means that it is
not possible to make Zeus bots revert to old bi-
nary or configuration file versions by replaying
old updates.

0 31

data block id (4 bytes)

data
...

Figure 3.7: Data reply payload (length varies).

Proxy reply (type 0x06)

Proxy replies are used to deliver the identifiers
and addresses of peers where stolen data can
be dropped. We refer to such peers as proxies.
Proxy replies are sent in response to version
requests with piggybacked proxy request mark-
ers. A proxy reply can contain up to 4 proxy
entries, each of which is signed separately.

Each proxy entry in a proxy reply is format-
ted as shown in Figure 3.8. Proxy entries are
formatted the same way as the peer structs used

in peerlist replies, except that the ip type field is
4 bytes long instead of 1 byte, and there is a 256
byte RSA signature at the end of each proxy en-
try. The reason for the longer ip type field is
unknown. Proxy reply entries do not contain
timestamp fields, meaning that it is possible to
replay old proxy reply entries.

0 63

ip type (4 bytes)

proxy id (20 bytes)

ipv4 addr (4 bytes) ipv4 port
(2B)

ipv6 addr (16 bytes)

ipv6 port
(2B)

RSA signature (256 bytes)
...

Figure 3.8: Proxy struct (304 bytes).

Proxy push message (type 0x32)

Proxy push messages, like proxy replies, serve
to inform Zeus peers about proxies where
stolen data can be dropped. The difference is
that proxy push messages are actively pushed
through the Zeus network, rather than being
sent in response to any message.

Proxy push messages utilize the ttl field in
the Zeus header (see Section 3.2.3). The ttl field
has an initial value of 4 for proxy push mes-
sages. Each Zeus peer which receives a proxy
push message decrements the ttl field in the
header, and then forwards the message to each
peer in its peerlist. This way, proxy push mes-
sages propagate very rapidly through the Zeus
p2p network.

Each proxy push message contains a single
proxy entry of the same format used in type
0x06 messages, as shown in Figure 3.8.

3.2.5 TCP message types

Zeus uses TCP for two purposes. The first is
to download binary and configuration files, al-
though newer Zeus variants prefer to do this via
UDP. The second is to connect to the proxies
used for dropping stolen data.
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Zeus TCP communication begins with a
message containing a normal Zeus header, in-
dicating what kind of data is to be trans-
ferred. This is followed by a download or up-
load of the actual data. The data is trans-
ferred in packets containing only the size of
the data and the data itself, without the usual

Zeus header. File transfers are acknowledged
by sending a marker packet containing only the
payload 0x01000000, again without a header.

An interesting detail is that Zeus TCP mes-
sages do not contain the usual random padding
seen in Zeus UDP messages. Additionally, the
length of padding field in Zeus TCP headers is
set to an invalid value, rather than being zeroed
out as would be expected for messages without
padding. It is possible that Zeus uses the length
of padding field for a different purpose in TCP
messages than in UDP messages.

Data drop request (type 0x66)

We have observed that TCP type 0x66 pack-
ets are followed by large uploads from the Zeus
peers which initiated the TCP communication.
We therefore suspect that type 0x66 packets
request permission to drop data. However, we
have not yet reversed the format of the data
upload that follows type 0x66 packets.

Binary request (type 0x68)

TCP binary request packets are used to re-
quest updated Zeus binaries. Unlike UDP data
requests, TCP binary requests do not specify
which data offsets and sizes are desired, as TCP
automatically takes care of these issues.

Configuration request (type 0x6A)

TCP configuration requests are identical to
TCP binary requests, except for the differing
type number. Configuration requests are used
to request new configuration files.

Data transfer

Zeus features a single TCP data transfer for-
mat used for every kind of data transfer. Data
transfer packets do not carry Zeus headers, and
thus do not have an associated type number.
The format of TCP data transfer packets is
extremely simple, as illustrated in Figure 3.9.

It consists of 4 bytes indicating the size of the
transmitted data, followed by the data itself.

Just as Zeus UDP downloads, binary and
configuration file downloads via TCP end with
a 256 byte RSA signature of the MD5 hash of
the file being downloaded. Data transfers via
TCP are RC4 encrypted using the session hash
of the last exchanged UDP message as the key.

0 31

data size (4 bytes)

data
...

Figure 3.9: Data transfer (length varies).

3.2.6 Communication patterns

The previous sections have described the for-
mat and purpose of each of the Zeus message
types. In this section, we discuss how all the
message types fit together, and how Zeus bots
use them to communicate.

Passive communication

Every Zeus bot listens for incoming messages
from other bots. A Zeus bot receiving an in-
coming request will handle this request to the
best of its abilities, and send back an appro-
priate reply, as described in Section 3.2.4 and
Section 3.2.5.

The sender of any successfully handled re-
quest is considered for addition to the respond-
ing peer’s peerlist. This is the main mechanism
used by Zeus to learn about other peers, and it
is also how new peers introduce themselves to
the network.

If the responding peer currently knows
fewer than 50 peers, then it always adds the
sender of the request to its peerlist. Similarly, if
the identifier of the sender is already present in
the peerlist, then the corresponding IP address
and port are updated. This is done because
the sender may have a dynamically changing
IP address.

If the identifier of the sender is not yet
known to the responding peer, and the respond-
ing peer already knows at least 50 peers, then
the sending peer’s identifier, IP address and
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port are added to a queue of peers to be con-
sidered for addition to the peerlist later.

Before adding a new peer to the peerlist, a
number of sanity checks are performed. First,
only peers which have a source port between
10000 and 30000 are added to the peerlist. Zeus
bots always use ports in this range, though their
externally visible ports may change in case they
are behind a NAT. Zeus bots which are behind
a NAT and which use external ports outside the
normal Zeus range simply won’t be present in
any other peer’s peerlist.

Additionally, there is a limit on the max-
imum number of peers with identical IP ad-
dresses in the peerlist. In the first Zeus variant
we studied, this limit was set to 3, but it was
changed to 2 in later variants. If adding a new
peer to the peerlist would make its IP address
too prevalent in the peerlist, then the new peer
is discarded, but the existing entries with the
same IP address remain.

Most incoming messages are requests from
other peers, and are handled by sending back
the appropriate reply type. However, type 0x32
proxy push messages propagate in a different
way than normal Zeus messages, and deserve a
little more attention here.

If a type 0x32 message arrives, it is first
checked for validity. This is done using a num-
ber of checks on the message type number and
the message length. Additionally, the included
signature is checked for validity.

If the message passes the checks, the proxy
it advertises is added to the receiving bot’s list
of proxies. The proxy list is similar to the
peerlist, but is maintained separately. Zeus
bots contact the peers listed in their proxy lists
when they need to upload stolen data. It is
worth noting that if a Zeus peer receives its own
contact information in a proxy reply or proxy
push message, it does not add this information
to its proxy list.

If the identifier of a new proxy is already
known in the proxy list, then the corresponding
IP address and port are updated. Otherwise, if
any of the proxies in the list is over 100 min-
utes older than the new proxy, then the first old
proxy for which this is found to be the case is
overwritten with the new proxy. In any other
case, the new proxy is added to the end of the
proxy list. Finally, the proxy list is truncated

to its maximum length of 10 entries. Proxies
received via type 0x06 messages are handled in
the same way.

Next, if the message has a ttl value greater
than zero, the ttl field is decremented. The type
0x32 message is then propagated to all peers in
the peerlist.

Active communication

Besides passively listening for messages, all
Zeus bots also actively participate in communi-
cation. The active communication of Zeus bots
is illustrated in Figure 3.10, and described in
detail in the remainder of this section.

The Zeus active communication pattern
consists of a large loop which repeats every 30
minutes. The function of the active communi-
cation loop is to keep Zeus up to date, and to
refresh the peerlist.

Zeus starts its active communication cycle
by checking if it has any peers to communicate
with. If not, it enters Domain Generation Al-
gorithm (DGA) mode and attempts to retrieve
a new peerlist from the domains generated by
the DGA. If Zeus fails to reach any of the gen-
erated DGA domains, it keeps trying every 10
minutes until it succeeds.

After ensuring that it has peers to con-
tact, Zeus proceeds to query each of its peers
for their binary and configuration file versions.
This step serves both to keep Zeus up to date,
and to check each peer for responsiveness. Ad-
ditionally, if Zeus currently knows fewer than
4 data drop proxies, it piggybacks a proxy re-
quest marker with each version request, causing
the peers receiving the version requests to send
back type 0x06 proxy reply messages in addi-
tion to their version replies.

Each peer is sent a version request a maxi-
mum of 5 times, with a 15 second timeout per
request. If a peer fails to answer a request
with a valid version reply, Zeus checks if it has
working Internet access by attempting to con-
tact www.google.com or www.bing.com. If it
does, then the timeout is counted as a failure
to respond by the remote peer. If Zeus does
not have Internet access, it stops attempting to
probe the current peer.

Peers which fail to respond to 5 subsequent
version requests are deleted from the peerlist.
If Zeus does receive a version response from a
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Figure 3.10: A state machine illustrating Zeus’s active communication.

probed peer, it keeps this peer in its peerlist
and checks if a new binary or configuration file
version can be retrieved from this peer. The
process of updating itself takes place outside
of the main communication loop, so it is not
shown in Figure 3.10.

After version querying all peers in its
peerlist, Zeus proceeds to handle any pend-
ing peers which were queued from incoming re-
quests (see Section 3.2.6). Each queued peer
is handled as follows. If the peer’s identifier
is already known, then the corresponding IP
address and port are updated as needed. Else,
the pending peer is sent a single version request
with a 15 second timeout. If the peer does not
respond in time, it is discarded. If the peer does
respond, then it is added to the peerlist. This
process continues until the peerlist has length
50. After the peerlist has reached length 50, any
still pending peers are left in the peer queue.

The next and final step in the loop is only
executed once every 3 hours, and only if Zeus
has a peerlist consisting of less than 25 peers.
It can be considered an “emergency measure”
to recover in case of a very small peerlist. This
step, called the peerlist refresh cycle, is the only
case where Zeus actively requests peerlists from
other peers. Pseudocode describing the algo-

rithm used in the peerlist refresh cycle is shown
in Figure 3.11.

In the peerlist refresh cycle, Zeus constructs
a completely new peerlist from its old peerlist
and any still pending peers. A peer buffer is
created which initially contains the entire old
peerlist, and is then further filled with any peers
which were still left pending after the previous
active communication step.

Each peer from the peer buffer is consid-
ered for addition to the new peerlist. A peer
from the peer buffer is added to the new peerlist
either if the new peerlist is still shorter than
50 peers, or if the new peer is closer to the
Zeus bot’s own identifier than one of the other
peers already in the new peerlist. This means
that Zeus favors peers close to itself, and Zeus
peerlists become biased towards the identifiers
of the bots which own the peerlists.

Before a peer is added to the new peerlist, it
is sent a peerlist request. If it does not respond,
the peer is not added to the new peerlist, and
Zeus continues with the next peer from the peer
buffer. If the peer does respond, then all peers
from the peerlist reply are queued in the peer
buffer for possible addition to the new peerlist.

Each peer which successfully responded to
the peerlist request is subsequently sent a ver-

17



new_peerlist = [ ] #array for the new peerlist

peer_buf = [ ] #peers under consideration

peer_buf . append( reg i s t ry . load_peerl ist ( ) )
peer_buf . append(peer_queue)

for each peer p in peer_buf :
peer_buf . remove(p)
peer_queue . remove(p)
i f len ( new_peerlist ) >= 150:

#maximum peerlist size is 150

break

i f len ( new_peerlist ) < 50
or ( for some peer q in new_peerlist : d i s t (p , us ) < dist (q , us ) ) :

#close peers are favored

pl_reply = p . query_peerlist ()
i f not pl_reply :

continue

new_peerlist . add_or_update(p)
peer_buf . append(pl_reply ) #append all peers from pl_reply

p . query_version () #does not affect whether p is added

new_peerlist . order_by_timestamp()
reg i s t ry . store_peer l i st ( new_peerlist ) #replace peerlist with new_peerlist

Figure 3.11: The Zeus peerlist refresh algorithm.

sion request message. However, it is added to
the new peerlist regardless of whether or not
it responds to the version request. Version
requests sent in this step always contain pig-
gybacked proxy request markers. If the new
peerlist reaches 150 peers, the process of adding
new peers is stopped.

3.3 Crawling Zeus

Based on our reversing results, we have devel-
oped a Zeus crawler to estimate the size and
global distribution of the Zeus p2p network.
This section describes the design and results of
our crawler.

3.3.1 Crawler design

Our crawler consists of three separate threads,
namely a sender thread, a receiver thread, and
a logger thread. The threads communicate with
each other via two queues, which we call the
peer queue and the database queue.

Initially, the peer queue contains a number
of bootstrap peers. For early crawls, we man-
ually selected 20 bootstrap peers, but after our
initial crawls of the network we assembled a list
of 30.000 bootstrap peers in order to speed up
future crawls.

The peer queue is read by the sender thread.
Each of the peers read from the peer queue is
sent five peerlist requests. One of the requests
contains the identifier of the queried peer, iden-
tical to peerlist requests sent by legitimate Zeus
peers. The remaining four requests contain ran-
dom identifiers to increase coverage of the net-
work (recall that Zeus bots return peers close
to the requested identifiers, so only requesting
non–random identifiers yields poor coverage).

The sender thread keeps track of which
peers it has already queried. To increase cover-
age of the network, the sender thread does not
query the same peer twice until it has no other
option. That is, it queries as many different
peers as possible until the peer queue runs out,
after which it pushes all of the explored peers
back into the peer queue to be crawled again,
with new random peerlist requests.

Any peerlist replies from the queried peers
are read by the receiver thread. This thread
parses the received peers from the peerlist
replies and pushes them into the peer queue to
be handled by the sender thread. Additionally,
the peers are pushed into the database queue
to be logged by the logger thread.

The logger thread logs each of the received
peers. For each peer, we log a timestamp, the
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Figure 3.12: Geographic distribution of externally reachable Zeus peers.

identifier, IP address and port of the bot which
sent us this peer, and the identifier, IP address
and port of the peer itself. This information
allows us to create connectivity graphs of the
Zeus network, estimate the size of the Zeus net-
work based on the number of unique identifers
found, and determine the global distribution of
the Zeus bots. Originally, the logger thread
stored information directly into a PostgreSQL
database. Because of performance issues, we
later modified the crawler to log to comma–
separated text files instead, which we period-
ically import into a database.

There is no real way to determine when a
crawl of the Zeus network is “complete”. There-
fore, we simply let each of our crawls run for 24
hours before we manually terminate it. After 24
hours, very few new peers are still discovered, so
we believe that we achieve reasonable coverage
of the Zeus network. Letting the crawler run
longer than 24 hours per crawl would pollute
our results too much with dynamically chang-
ing IP addresses and churn from newly infected
or disinfected bots.

3.3.2 Network size and distribution

Based on our crawling results, we estimate that
the Zeus network currently contains between

150.000 and 200.000 bots. This estimate is
based on the number of distinct peer identifiers
found by our crawler in 24 hours.

We estimate that the Zeus network contains
around 5.000 externally reachable peers. This
number is determined by counting how many
of the peers we found actually respond to our
queries. NATed peers and peers behind fire-
walls typically do not respond to unexpected
incoming UDP packets, meaning that they are
not externally reachable.

Figure 3.12 shows the global distribution of
the externally reachable Zeus peers found dur-
ing one of our crawls. The locations shown
are based on GeoIP results from the MaxMind
GeoIP database3.

3
http://www.maxmind.com

19

http://www.maxmind.com


Chapter 4

A Takedown Attempt Against Zeus

This chapter describes the results of our
first takedown attempt against Zeus. Our take-
down attempt took place during April and May
of 2012, and was based on the reverse engineer-
ing results described in Chapter 3.

Although our takedown attempt did not
disable the entire Zeus p2p botnet, we did man-
age to spread a significant amount of poison,
reducing the botnet’s ability to spread updates
and data drop proxy locations. Additionally,
we gained a better understanding of Zeus’s be-
haviour under a poisoning attack. This im-
proved understanding may prove useful in fu-
ture takedown attempts.

4.1 Attack strategy

Recall from Section 3.2.6 that a Zeus bot receiv-
ing a request from another bot uses the source
hash field of the request header to check if it al-
ready knows the requesting bot, and that if the
requester’s identifier is indeed already known,
the receiving bot’s peerlist is updated accord-
ing to the source IP address and port of the
request. Our attack is based on the fact that
this behaviour can be used to actively poison
the peerlists of Zeus bots.

4.1.1 Peerlist poisoning

The poisoning of a single Zeus peerlist entry is
illustrated in Figure 4.1. In the example, the
Zeus bot being poisoned initially has a peerlist
with an entry for identifier 0xffff, containing
the associated IP address 198.51.100.49. For
clarity of the figure, 2 byte identifiers are used,
and no port numbers are shown. In reality, Zeus

keeps track of the 20 byte SHA1 identifier and
last used IP address and port of each peer in
its peerlist.

Next, a request is sent to the victim bot,
with the source hash set to the identifier 0xffff
that is to be overwritten in our example. When
the victim bot receives this request, it finds that
it already has a peerlist entry with the identifier
0xffff, and overwrites the address associated
with this identifier with the source address of
the received request.

The source IP and port of a request can
easily be spoofed, allowing an attacker to over-
write any known entry in the peerlist of a Zeus
bot with any desired IP address and any port
between 10000 and 30000 (the port range used
by Zeus, see section 3.2.6).

4.1.2 Poisoning the Zeus botnet

We now describe the full peerlist poisoning at-
tack used during our takedown attempt against
Zeus. Our attack aims to poison as many en-
tries as possible in the peerlists of all Zeus bots
so that these entries no longer point to legiti-
mate Zeus peers. The eventual goal of the poi-
soning attack is to render the Zeus bots unable
to update and receive commands.

In order to overwrite the peerlist of a Zeus
bot, we first need to know which entries this
peerlist contains. This is achieved by perform-
ing regular crawls of the Zeus network, as de-
scribed in Section 3.3. By analyzing which
peers are returned by each bot during a crawl,
we obtain a partial view of each bot’s peerlist.

Next, we attempt to overwrite each of the
peerlist entries found during the most recent
crawl, using the peerlist poisoning vulnerabil-
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0x0000; 198.51.100.1

0x1111; 198.51.100.2

...

0xffff; 198.51.100.49

request; src hash=0xffff;

src IP=203.0.113.1

(a) Send a request to the victim with a crafted source hash.

0x0000; 198.51.100.1

0x1111; 198.51.100.2

...

0xffff; 203.0.113.1

reply

(b) The victim overwrites its peerlist entry for the given source hash
with the source address of the packet, then replies normally.

Figure 4.1: Poisoning a Zeus peerlist entry.

ity described in Section 4.1.1. We continuously
repeat these crawling and poisoning steps. Be-
cause our crawler requests a number of random
identifiers from each bot it contacts, we obtain
a different partial view of each bot’s peerlist
during every iteration, increasing the coverage
of our poisoning.

We use 60 different IP addresses to poison
the peerlist entries of the Zeus bots. These IP
addresses all point to a rogue Zeus server op-
erated by us, which responds to any incoming
request from a poisoned bot with a legitimate
looking reply. This is done to ensure that we do
not fail the periodic responsiveness checks per-
formed by Zeus bots, as described in Section
3.2.6. Additionally, if an active peerlist request
is received by our server, it responds with a list
of peers crafted to poison as many of the re-
questing bot’s peerlist entries as possible.

Our poisoned peerlist entries are spread fur-
ther through the Zeus botnet by the bots them-
selves, as they communicate their peerlist en-
tries to each other. Unfortunately, this effect
is limited, since Zeus bots rarely actively re-
quest peerlist entries from each other (see Sec-
tion 3.2.6). Normally, Zeus bots rely on find-
ing other peers through the source hashes and
source addresses of incoming requests, rather
than through the exchange of possibly poisoned
peerlist entries.

4.2 Takedown results

We started our takedown attempt on April 27th
2012. The poisoning program utilized during
the takedown attempt uses 10 threads, each of
which repeatedly retrieves the next node to poi-

son from the list of nodes obtained during the
most recent crawl, and then attempts to poison
that node. During the takedown attempt, we
ran the poisoning program roughly once a day.
In the meantime, we relied on the Zeus bots
to spread our poison amongst themselves, and
poison themselves further by issueing peerlist
requests to our rogue Zeus server.

To poison each node, the poisoning program
utilizes a mix of tactics. First, it attempts to
overwrite each of the already existing peerlist
entries of the current poisoning target with one
of our 60 IP addresses. The identifiers to over-
write for each target are determined from the
results of the most recent crawl.

Additionally, the poisoning program at-
tempts to extend the target bot’s peerlist to
a length of 50, to ensure that legitimate Zeus
peers contacting the target after the poisoning
attack are not immediately added to its peerlist
(see also Section 3.2.6). This is done partially
using random identifiers, and partially using
identifiers close to the target’s own identifier.
The rationale behind the latter is that peerlist
entries with identifiers close to the target are
likely to be spread further when other bots re-
quest new peers from the target. This is true
because the identifier requested in a peerlist re-
quest message is that of the receiver of the re-
quest (see Section 3.2.4).

On May 9th 2012, our poison had spread
significantly through the Zeus p2p botnet, as
shown in Figure 4.2. The x–axis of the fig-
ure shows the percentage of peerlist entries per
bot pointing to one of our IPs, while the y–axis
shows the percentage of bots for which this por-
tion of their peerlists was poisoned. The figure
is based on the results of our Zeus crawler.
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Figure 4.2: Percentage of peerlist entries pointing to one of our IPs versus percentage of bots for
which this amount of peerlist entries was poisoned on May 9th 2012 (1 day before the Zeus IP
blacklist update).

Figure 4.2 shows that on May 9th, only 12
percent of all bots contacted by our crawler did
not return any peerlist entry pointing to one
of our IPs. All other bots returned at least
one entry pointing to our rogue Zeus server.
Additionally, almost 20 percent of the bots re-
turned exclusively peerlist entries pointing to
our IPs, and about 44 percent of the bots re-
turned one of our IPs in more than 90 percent
of their peerlist entries. The average percent-
age of peerlist entries per bot pointing to one
of our IPs was 54.83%.

On May 10th 2012, our takedown efforts
were called to a halt by an update from the
Zeus botmasters, in which they blacklisted the
IP range we were using for our poisoning at-
tack. Updated bots no longer accepted incom-
ing messages from the blacklisted IPs, making
it impossible for our rogue Zeus server to pass
the periodic responsiveness checks performed
by the Zeus bots. As a result, the updated
bots quickly cleaned our IP addresses out of

their peerlists, and regained connectivity to le-
gitimate Zeus peers via the normal peerlist up-
date mechanisms.

At the same time, the bots which were ei-
ther completely poisoned or close to completely
poisoned were unable to retrieve the blacklist
update. Thus, these bots continued to contact
our rogue server, and we were able to continue
poisoning them, thereby preventing them from
rejoining the normal Zeus network.

By May 19th 2012, 9 days after the botmas-
ters blacklisted our IPs, only slightly more than
half of all Zeus bots had received the latest up-
date, as shown in Figure 4.3. Since Zeus bots
are controlled via configuration file updates,
bots which are unable to retrieve updates are
rendered unusable to the botmasters. It is diffi-
cult to determine with certainty how many Zeus
bots are unable to update due to our poisoning
efforts, and how many are blocked from updat-
ing due to another factor. However, combined
with the results from Figure 4.2, we estimate
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Figure 4.3: Zeus version distribution on May 19th 2012 (9 days after the Zeus IP blacklist
update). Version 22517245 introduced the IP blacklist which blocked our poisoning IP range.

that at least the near 20 percent of completely
poisoned peers are blocked from updating due
to our efforts.

4.3 Discussion

Although our takedown attempt against Zeus
did not succeed in disabling the entire botnet,
we were able to inject a significant amount of
poison into the botnet. On average, we man-
aged to poison more than half of each bot’s
peerlist. A considerable fraction of the Zeus
bots was rendered unable to update as a re-
sult of our poisoning efforts. Additionally, our
takedown attempt has led to an improved un-
derstanding of how Zeus reacts to poisoning
attacks, which may prove useful during future
takedown attempts.

Perhaps the most important problem in our
takedown attempt was that at the time of the
takedown, we were not aware of just how rarely
Zeus peers actively request peerlists from each
other. As a result, we relied too much on the
Zeus bots to spread our poison amongst them-
selves, while we should instead have been much

more proactive in the injection of new poison
into the network.

Furthermore, because Zeus peerlist requests
are so uncommon, we received an unexpectedly
low number of peerlist requests to our rogue
Zeus server. Thus, we were unable to inject
as much new poison into the Zeus network via
peerlist replies from our rogue Zeus server as
we had anticipated.

Since Zeus relies largely on incoming re-
quests to learn about new peers, any poisoning
effort against Zeus is a race against legitimate
Zeus peers contacting each other. Thus, failing
to inject new poison at a sufficient rate allowed
the Zeus network too much time to recover.

Summarizing, we believe that a future take-
down attempt against Zeus should aggressively
inject poison into the Zeus network through use
of the peerlist poisoning vulnerability described
in Section 4.1.1, and should not rely on the Zeus
bots to spread the poison amongst themselves.
We expect that a sufficiently aggressive poison-
ing effort will result in a complete takedown of
the Zeus p2p botnet.

23



Chapter 5

A Botnet Resilience Comparison

In the previous chapters, we have analyzed
the designs and vulnerabilities of several major
p2p botnets. This chapter provides an overview
and comparison of the resilience of each of the
botnets discussed in the previous chapters.

By comparing the characteristics of botnets
which were successfully taken down to those of
botnets which have survived exceptionally long,
we derive a number of characteristics which
contribute to botnet resilience. Furthermore,
we estimate the resilience of each of the com-
pared botnets to peerlist poisoning, one of the
most promising and generalized attack vectors
against fully decentralized p2p botnets.

5.1 Botnet survivability

In this section, we analyze the life span of each
of the discussed botnets, and compare the char-
acteristics of botnets with short life spans to
those of botnets with long life spans. From this,
we determine which characteristics contribute
most to p2p botnet resilience.

5.1.1 Botnet life spans

Figure 5.1 shows the life span of each of the bot-
nets we have analyzed. Storm, Waledac and
Hlux each lived for 1.5 to 2 years. Although
Storm was never truly disabled, it had inher-
ent vulnerabilities which allowed attackers to
disrupt its command and control [8]. Waledac
was introduced by the Storm authors about 1.5
years after the appearance of Storm, to ad-
dress these vulnerabilities [10, 11]. After the

introduction of Waledac, remnants of Storm re-
mained alive for about half a year. About 2
years after its introduction, Waledac was also
taken down, and was succeeded by Hlux after
several months. Hlux, in turn, was also dis-
abled roughly 1.5 years after it first appeared,
but it should be noted that Hlux has since been
restarted1, and is now significantly larger than
it was in its first iteration [15].

The other botnets shown in the figure have
not yet been disabled. In the case of Miner
and Zeus this can be explained by the fact that
these botnets are quite new, and they are still
being actively researched. While the Conficker
C botnet has also not been disabled since its
introduction in early 2009, and is among the
longer living botnets, it should be noted that
Conficker C appears to be in the process of dy-
ing out. It currently consists of only 25.000
bots, a fraction of the 200.000 bots it contained
at its peak2.

The two longest living p2p botnets are Ze-
roAccess and Sality. Of these two, Sality clearly
stands out. It has been active since January
2008, and at the time of writing still continues
its operations undisturbed [3].

5.1.2 Resilience factors

In Table 5.1, we compare the major characteris-
tics of the discussed botnets. These character-
istics are summarized from the botnet descrip-
tions in Chapter 2.

Comparing the data from Table 5.1 with
the botnet life spans shown in Figure 5.1, we
observe a correlation between the life span of

1
http://www.securelist.com/en/blog/655/Kelihos_Hlux_botnet_returns_with_new_techniques

2
http://www.confickerworkinggroup.org/wiki/pmwiki.php/ANY/InfectionTracking#toc8
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disabled
active

active, severely declined

Figure 5.1: The lifetimes of the botnets discussed in this chapter.

Botnet Ancestor First Last #Bots Protocol Encryption C&C C&C
seen seen ×1000 signed routing

Storm Jan 2007 Dec 2008 80 Overnet XOR No Overnet
lookups

Sality Jan 2008 200 Custom RC4 Yes Gossiping
Waledac Storm Apr 2008 Feb 2010 165 Custom AES No Router

peers
Conficker C Feb 2009 200 (25) Custom RC4 Yes Gossiping
ZeroAccess Jun 2009 150 Custom RC4 Yes Gossiping
Hlux Waledac Dec 2010 Mar 2012 49 (130) Custom Blowfish Yes Router

(back up) + 3DES
Miner Aug 2011 800 Custom None Yes Gossiping
Zeus Oct 2011 200 Custom Chained Yes Gossiping

XOR

Table 5.1: Comparison of the major characteristics of the discussed botnets. Characteristics in
parentheses represent significant changes from the original situations.

each botnet, and the way that it routes C&C
traffic. Namely, all of the botnets which were
taken down route commands in a structured
way. In the case of Storm, commands are pub-
lished in the Overnet DHT under predictable
keys. Both Waledac and Hlux use externally
reachable peers (referred to as router peers in
the table) to route command and control traf-
fic between the bots and an upper layer of cen-
tralized command servers. In contrast, none
of the longer living botnets uses a structured

C&C routing approach. Instead, they rely on
gossiping to spread commands. This observa-
tion suggests that unstructured C&C routing
is generally more resilient against takedown at-
tempts than structured C&C routing.

Botnets such as Storm, which use existing
DHT–based protocols like Overnet, are typ-
ically vulnerable to index poisoning attacks
which prevent them from routing commands
to their bots. This is a result of the fact that
DHT–based protocols typically allow any peer
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to publish content, meaning that if an attacker
can predict a DHT–based botnet’s command
keys, it is possible to overwrite the botnet’s
commands as soon as they are published [17].

Botnets like Waledac and Hlux, which use
centralized backend servers, are vulnerable to
takedown of these backend servers. It should be
noted, however, that it is possible in Waledac
and Hlux to send new lists of command server
domains to the bots in case the existing servers
are disabled. This is why the takedowns against
both Waledac and Hlux consisted of legal action
against their backend domains, combined with
peerlist poisoning to disrupt the propagation of
new backend domain lists [12, 15].

Another important botnet resilience factor
is command signing. If a botnet allows the
use of unsigned commands, attackers can in-
sert their own commands into the botnet, po-
tentially disabling it entirely by propagating
their own binary update. Table 5.1 shows that
all of the discussed botnets, except Storm and
Waledac, implement command signing.

It should be noted that DHT–based bot-
nets which implement command signing are not
necessarily immune to index poisoning. Al-
though command signing prevents the insertion
of rogue commands into a botnet, it does not
prevent index poisoning attacks which simply
corrupt existing commands.

Table 5.1 does not show a relationship be-
tween packet encryption and botnet life span.
Although nearly all of the compared botnets
do implement some form of packet encryp-
tion, this typically involves the use of hard-
coded keys or weak XOR encryption algo-
rithms. Thus, packet encryption typically
seems to serve mostly as an obfuscation layer,
and does not significantly increase the resilience
of any of the compared botnets.

5.2 Poisoning resilience

In Section 5.1.2, we identified two important
factors for the resilience of p2p botnets. First,
command signing greatly increases botnet re-
silience by preventing the injection of rogue
commands. Second, unstructured command
routing mechanisms generally appear to be
more resilient than structured command rout-
ing mechanisms.

As shown in Table 5.1, most of the com-
pared p2p botnets implement both command
signing and unstructured command routing.
Thus, most of these botnets are immune to
rogue command injection and do not have any
clear points of failure in their command routing
infrastructures. Barring command overwrit-
ing attacks and attacks against weak command
routing infrastructures, one of the most promis-
ing and generally applicable attacks against p2p
botnets is peerlist poisoning. Therefore, we de-
vote this section to studying the susceptibility
of each of the discussed botnets to peerlist poi-
soning attacks.

In order to compare the susceptibility of
each of the botnets to peerlist poisoning, we
identify two factors which are crucial to the
success of a peerlist poisoning attack. First, it
must be possible to insert poisoned peerlist en-
tries into the victim botnet at a sufficient rate.
If this is not possible, then the poisoning attack
will be diminished by the normal exchange of
peerlist entries between legitimate bots. Sec-
ond, bots must place a sufficient level of trust

in new peerlist entries. Otherwise, if the victim
botnet uses strong verification mechanisms for
new peerlist entries, poisoned peerlist entries
may be detected and rejected by the botnet.

The rest of this section analyzes these two
factors in each of the compared botnets, in or-
der to estimate how vulnerable each botnet is
to peerlist poisoning.

5.2.1 Peer exchange rate

Table 5.2 compares several factors influencing
the rate at which each of the compared botnets
can be poisoned.

The Sality botnet immediately stands out.
It has a fairly large maximum peerlist length
of 1000, while only allowing a single peer to
be exchanged at once. To further slow down
passive peerlist poisoning, Sality only requests
new peers every 40 minutes, and only if it cur-
rently has less than 980 peers in its peerlist.
Although it is possible to actively request ad-
dition to a Sality bot’s peerlist, Sality verifies
each new peer by probing it, and does not allow
duplicate IP addresses in its peerlist [3]. Thus,
to fully occupy a Sality peerlist through active
peer sharing, an attacker needs 1000 externally
reachable IP addresses, or must share loopback
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Botnet Peerlist #Peers per Peer request Active
size (max) exchange (max) frequency peer sharing

Storm 128 buckets 20 (CONNECT) Every 30 seconds Yes (PUBLICIZE)
×20 peers

Sality 1000 1 Every 40 minutes Yes
(if < 980 peers)

Waledac 1000 200 Unknown Yes
Conficker C 2048 Unbounded Probabilistic Yes

(during peer scan)
ZeroAccess 256 256 Every 20 minutes No
Hlux 500 250 Unknown Yes
Miner Unbounded 800 Unknown Yes
Zeus 150 10 Every 3 hours Yes

(if < 25 peers)

Table 5.2: Factors influencing the potential peerlist poisoning rate of each botnet.

Botnet New peer Periodic peer Serving peer Peers Peer
verification verification verification overwritable preference

Storm Reject duplicate None None Yes Oldest alive
IP + port

Sality Probe actively Check sufficient Must have No High goodcount
pushed peer goodcount every responded to

40 minutes pack exchange

Waledac None None None No Newest
Conficker C Check version of None None No Newest

discovered peer
ZeroAccess None None None No Newest
Hlux Reject duplicate None None Yes Newest

IP + port
Miner None None None No None
Zeus Bound duplicate Check responsive None Yes Close to own

IPs every 30 minutes identifier

Table 5.3: Trust factors influencing the resilience of each botnet to peerlist poisoning.

addresses instead. Sality peerlist poisoning is
complicated further by Sality’s peerlist update
policy, as discussed in Section 5.2.2.

In contrast, Table 5.2 shows that the
Waledac and Hlux botnets facilitate especially
fast peerlist poisoning. They allow attackers to
actively push 200 and 250 peers at once, re-
spectively. These are quite significant amounts
compared to the respective maximum peerlist
sizes of 1000 and 500 [11, 15]. The feasibility of
poisoning Waledac and Hlux has been demon-
strated in practice during the previously dis-
cussed takedowns against these botnets. Con-
ficker C, which allows attackers to actively push
an unbounded number of peerlist entries, also
seems to facilitate rapid peerlist poisoning [13].

ZeroAccess, although it allows the exchange
of a full peerlist of 256 entries at once, does not
support the active pushing of peers, so that at-
tackers wishing to poison a bot must wait for
that bot to contact them. Once this occurs,
however, the bot can be poisoned completely
at once [14].

The Miner botnet is a special case. Al-
though it allows the exchange of 800 peers
at once, its maximum peerlist length is un-
bounded, meaning that although a Miner bot’s
peerlist can be filled with many polluted en-
tries, it can never be “poisoned completely”.
Thus, the utility of the fast peer exchange rate
allowed by Miner is limited. Further difficulties
poisoning Miner are discussed in Section 5.2.2.
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The remaining botnets allow moderate
peerlist poisoning rates. The feasibility of poi-
soning them depends on the verification mech-
anisms and update policies they implement, as
discussed in Section 5.2.2.

5.2.2 Trust factors

In Table 5.3, we evaluate the degree to which
each of the botnets trusts new peerlist entries.
The degree of trust placed in new peerlist en-
tries is evaluated in terms of the botnets’ ver-
ifications performed on peerlist entries, as well
as the botnets’ peerlist update policies.

Of the compared botnets, Sality and Zeus
perform the most elaborate peer verifications.
Both Sality and Zeus periodically clean up their
peerlists, attempting to discard any bad peers
which may have been added. Sality does this
every 40 minutes by deleting peers with insuf-
ficient goodcount values, indicating that they
have behaved erratically in the past. Zeus
cleans up its peerlist every 30 minutes by con-
tacting each of the peers in its peerlist, and
deleting peers which do not respond properly
to its queries.

In addition, Sality only adds peers which
are trying to push themselves into its peerlist
if they successfully respond to pack exchange

queries. As Sality does not allow multiple
peerlist entries with the same IP address, en-
tirely poisoning a Sality peerlist would require
1000 publicly reachable IP addresses. Further-
more, Sality only discards peers with low good-
counts, and legitimate peers are expected to
maintain high goodcounts. Thus, it is quite
unlikely that an attacker would be able to fully
occupy a Sality bot’s peerlist, as this would re-
quire the bot to have discarded all of its legiti-
mate peers [3].

The same effect is not achieved by the ad-
dress checks implemented by Storm and Hlux,
as they only prohibit duplicate IP/port pairs,
meaning that only a single IP address is suffi-
cient to poison their peerlists as long as each
peerlist entry uses a different port. The bound
on duplicate IP addresses implemented by Zeus
also does not provide it with the same resilience
against peerlist poisoning as Sality, because
Zeus peerlists are limited to 150 entries, so that
with a bound of 2 duplicates per IP address, 75
public IP addresses are enough to poison Zeus.

The Storm botnet is based on Overnet,
which always prefers contact with old peers
and, as long as they are responsive, never dis-
cards them in favor of new peerlist entries. This
complicates the poisoning of Storm, because for
a poisoned peerlist entry to overwrite an exist-
ing entry in a Storm peerlist, it is required that
the existing entry is unresponsive at the time
of poisoning [8, 9].

As already mentioned in section 5.2.1, the
Miner botnet implements an atypical peerlist
handling policy. As seen in Table 5.2, Miner
peerlists do not have maximum lengths. Thus,
Miner bots never discard any of their peers.
Furthermore, Table 5.3 shows that Miner
peerlist entries can not be overwritten, as they
consist only of IP addresses without associ-
ated identifiers. Combined, these characteris-
tics mean that it is not possible to fully poi-
son the peerlists of Miner bots. However, since
Miner bots select peers to contact randomly
from their peerlists, inserting many poisoned
entries into the peerlists of Miner bots reduces
the possibility that these bots select legitimate
Miner peers to contact. Thus, although a full
peerlist poisoning attack against Miner seems
infeasible, it is feasible to significantly reduce
the effectiveness of Miner bots [16].

The remaining botnets do not implement
significant peer verification mechanisms. More-
over, Waledac, Conficker C, ZeroAccess and
Hlux all implement policies which discard ex-
isting peerlist entries in favor of newer peers.
Thus, it is straightforward to force these bot-
nets to discard all of their existing entries and
replace them with newer ones. Additionally, all
of these botnets allow the exchange of many
peers at once, so that poison can be injected
at such high rates that the botnets are not ex-
pected to be able to recover [11, 13, 14, 15].

5.2.3 Summary

Our analyses from Section 5.2.1 and Section
5.2.2 are summarized in Table 5.4. The poison-
ing rate restrictions for the Miner botnet are
rated weak, because Miner allows a high peer
exchange rate. Nevertheless, we stress again
that Miner peerlists are unbounded, and can
thus never be “poisoned completely”.

The results from Table 5.4 are mixed. Four
of the analyzed botnets, namely Waledac, Con-
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Botnet Poisoning rate Trust exploitation Overall poisoning
restrictions defenses resilience

Storm Moderate Moderate Moderate
Sality Strong Strong High
Waledac Weak Weak Low
Conficker C Weak Weak Low
ZeroAccess Weak Weak Low
Hlux Weak Weak Low
Miner Weak Strong High
Zeus Moderate Moderate Moderate

Table 5.4: Summary of peerlist poisoning resilience analyses from Section 5.2.1 and Section 5.2.2.

ficker C, ZeroAccess and Hlux, are rated low in
terms of poisoning resilience, because they can
be poisoned at high rates and implement little
or no trust exploitation defenses.

At the same time, Sality seems to be very
difficult to poison effectively, as it simultane-
ously implements strong trust exploitation de-
fenses, and allows only a minimal peer exchange
rate. Because the Miner botnet appears to be
impossible to poison completely, its resilience
against peerlist poisoning is also rated high.
However, we add a side note that it is feasi-
ble to inject Miner bots with so many poisoned
entries that their probabilities of contacting le-
gitimate peers are severely reduced.

The remaining two botnets, Storm and
Zeus, are rated moderately resilient against
poisoning attacks. Poisoning attacks against
these botnets appear quite feasible, but re-
quire more coordination than poisoning attacks
against botnets like Waledac, Conficker C, Ze-
roAccess and Hlux.
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Chapter 6

Related Work

In order to gauge the threat that may be ex-
pected from p2p botnets in the future, several
researchers have designed their own hypothet-
ical p2p botnets, and analyzed their strengths
and weaknesses. Starnberger et al. [4] have
designed Overbot, a hypothetical p2p botnet
based on Kademlia. Overbot is designed to
obscure the IP addresses of the bots in the
network, so that the botnet’s size and com-
position can not easily be estimated. In ad-
dition, Overbot’s command routing protocol is
designed such that it can not easily be disrupted
by attackers who have captured some of the
nodes in the network. Yan et al. [5] have in-
troduced Antbot, a DHT–based tree structured
p2p botnet which publishes commands under a
different set of keys per tree level, so that an
attacker poisoning some of the published com-
mands does not automatically disrupt the en-
tire botnet.

In [18], Dumitriu et al. discuss and ana-
lytically evaluate the resilience of p2p file shar-
ing systems against Denial of Service attacks.
File sharing DoS attacks are also relevant in
the scope of p2p botnets, because they may
in some cases be usable to disrupt a botnet’s
command and control infrastructure. Castro et
al. [19] discuss techniques for secure routing
in structured p2p overlay networks. Conceiv-
ably, the introduction of more secure structured
p2p systems could lead to the development of
a stronger generation of structured p2p botnets
based on these systems.

Davis et al. [20] discuss the implementation
of effective sybil attacks against p2p botnets.
They evaluate the performance of several sybil–
based attack scenarios via simulation. In [12],

Sinclair et al. discuss the design of an attack
against Waledac which uses a mix of peerlist
poisoning and takedown of Waledac’s central-
ized backend servers. This attack was used in
practice to disable the Waledac botnet. An-
other attack which was implemented in prac-
tice is the takedown against Hlux. The details
of this attack are discussed in [15].

Finally, several papers exist which system-
atically study and compare several p2p botnets,
similarly to this thesis. In [21], Grizzard et al.
provide an overview of p2p botnets, as well as
a detailed case study on Storm. The overview
is rather dated, but is still useful as a supple-
ment to this thesis because it includes a num-
ber of very early p2p botnets which we did not
discuss. In [1], Dittrich provides an overview
of past botnet takedowns, including takedowns
against several p2p botnets, and draws par-
allels between them. Leder et al. [22] pro-
vide an interesting study on past botnet take-
downs, and the reasons for their success or fail-
ure. They argue that in order to remain com-
bative against modern botnets, more offensive
countermeasures are needed. Offensive coun-
termeasures against botnets, such as disinfec-
tion of bots through remote exploitation, are
currently complicated by legal issues. The pa-
per’s argument for more offensive countermea-
sures against botnets accentuates our conclu-
sion that some current p2p botnets are highly
resilient to conventional countermeasures like
peerlist poisoning.
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Chapter 7

Conclusions

We have analyzed and compared the re-
silience of several p2p botnets. In addition, we
have reverse engineered and attempted a take-
down against Zeus, the most recent p2p botnet
that we are aware of.

Our reverse engineering analysis has shown
that Zeus is a sophisticated botnet, and is cer-
tainly not trivial to attack. Our first takedown
attempt against Zeus was only partially suc-
cessful, and was discontinued due to a counter-
attack by the botmasters after fully poisoning
an estimated 20% of the Zeus bots. Neverthe-
less, we believe that a faster and more focused
poisoning attack against Zeus may very well re-
sult in a full takedown of the Zeus p2p botnet.

Our comparison of the resilience of p2p bot-
nets has shown that all of the discussed botnets
currently alive implement command signing, so
that they can not be disabled through the injec-
tion of rogue commands. Additionally, nearly
all of the discussed p2p botnets which were
not yet taken down use unstructured command
routing, without any weak centralized compo-
nents to attack. Peerlist poisoning appears to
be the most promising generalized attack vec-
tor against these botnets. For this reason, we
have estimated the peerlist poisoning resilience
of each of the discussed botnets.

Our poisoning resilience comparison has
shown that several current p2p botnets imple-
ment very weak defenses against peerlist poi-
soning, making them vulnerable to attack. On
the other hand, the Sality botnet is exception-
ally resilient against peerlist poisoning. It has
survived since its introduction in early 2008, il-
lustrating that correctly designed p2p botnets
can be extremely difficult to disable.
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Appendix A

Extracting Zeus with Volatility

This appendix details how to extract a Zeus binary from a memory dump using Volatility1 and
the malfind plugin for Volatility2.

The first step is to run a Zeus sample in a Windows virtual machine. We use a Windows
XP SP3 virtual machine running in VirtualBox 4.1.12 under Ubuntu 11.10. After a few seconds,
Zeus opens up a number of network sockets in the process where it injected itself. In the samples
we analyzed, one TCP socket and one UDP socket were opened in the explorer.exe process.
The opening of sockets can be observed using for instance the Process Explorer program from
Microsoft’s SysInternals Suite3.

Once Zeus is confirmed to be active, the next step is to dump the memory of the virtual
machine. A number of approaches are possible to accomplish this. We use the Moonsols DumpIt
utility4, which should be run from inside the virtual machine. Zeus can then be extracted from
the virtual machine memory dump using Volatility.

First, we confirm that Volatility correctly recognizes the memory dump.

$ volatility imageinfo -f zeus.raw

Volatile Systems Volatility Framework 2.0

Suggested Profile(s) : WinXPSP3x86, WinXPSP2x86 (Instantiated with WinXPSP2x86)

AS Layer1 : JKIA32PagedMemory (Kernel AS)

AS Layer2 : FileAddressSpace (./memdumps/zeus.raw)

PAE type : No PAE

DTB : 0x39000

KDBG : 0x8054cde0

KPCR : 0xffdff000

KUSER_SHARED_DATA : 0xffdf0000

Image date and time : 2012-02-27 09:42:29

Image local date and time : 2012-02-26 17:57:10

Number of Processors : 1

Image Type : Service Pack 3

Once this has been confirmed, we inspect the list of running processes to find the ID of the
process hosting Zeus (in our case this is explorer.exe).

$ volatility --profile=WinXPSP3x86 pstree -f zeus.raw

Volatile Systems Volatility Framework 2.0

Name Pid PPid Thds Hnds Time

0x82E68960:explorer.exe 1280 1260 20 426 2012-02-27 09:30:09

. 0x82C4DDA0:VBoxTray.exe 1992 1280 5 72 2012-02-27 09:30:14

. 0x82DD81D0:apimonitor-x86. 652 1280 13 186 2012-02-27 09:31:35

.. 0x82DC64B0:8e5e837d2204e1b 1468 652 0 ------ 2012-02-27 09:33:05

1
http://www.volatilesystems.com/default/volatility

2
http://code.google.com/p/volatility/wiki/CommandReference#Malware_and_Rootkits

3
http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx

4
http://www.moonsols.com/windows-memory-toolkit
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... 0x82DFB228:cmd.exe 1052 1468 0 ------ 2012-02-27 09:33:10

... 0x82D7A140:soono.exe 1516 1468 0 ------ 2012-02-27 09:33:07

. 0x82C5B020:DumpIt.exe 1256 1280 1 40 2012-02-27 09:42:27

. 0x82C32020:NLClientApp.exe 2000 1280 10 285 2012-02-27 09:30:14

0x82FC8A00:System 4 0 56 183 1970-01-01 00:00:00

. 0x82D64020:smss.exe 404 4 3 19 2012-02-27 09:30:00

.. 0x82E6A610:csrss.exe 528 404 10 375 2012-02-27 09:30:03

.. 0x82D4B020:winlogon.exe 556 404 16 491 2012-02-27 09:30:03

... 0x82D91020:services.exe 604 556 15 252 2012-02-27 09:30:04

.... 0x82D276E8:svchost.exe 908 604 9 240 2012-02-27 09:30:05

.... 0x82D4E980:svchost.exe 1036 604 14 189 2012-02-27 09:30:07

..... 0x82C3AB88:wscntfy.exe 1920 1036 3 48 2012-02-27 09:30:13

.... 0x82C4EC60:alg.exe 1872 604 6 101 2012-02-27 09:30:12

.... 0x82E76C28:spoolsv.exe 1380 604 11 121 2012-02-27 09:30:10

.... 0x82D4D9A0:nlsvc.exe 1508 604 10 153 2012-02-27 09:30:10

.... 0x82D473E0:svchost.exe 1000 604 5 60 2012-02-27 09:30:06

.... 0x82D3FDA0:VBoxService.exe 764 604 7 94 2012-02-27 09:30:05

... 0x82D95020:lsass.exe 616 556 19 334 2012-02-27 09:30:04

The process ID we need is listed under the Pid column. For explorer.exe, it is 1280. We
now run malfind to extract Zeus from its host process.

$ volatility --profile=WinXPSP3x86 malfind -f zeus.raw -p 1280 -D hidden_dumps/

Volatile Systems Volatility Framework 2.0

Name Pid Start End Tag Hits Protect

explorer.exe 1280 0x00fb0000 0xfecfff00 VadS 0 PAGE_EXECUTE_READWRITE

Dumped to: hidden_dumps/explorer.exe.2e68960.00fb0000-00fecfff.dmp

0x00fb0000 4d 5a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 MZ..............

0x00fb0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

0x00fb0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

0x00fb0030 00 00 00 00 00 00 00 00 00 00 00 00 08 01 00 00 ................

0x00fb0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

0x00fb0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

0x00fb0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

0x00fb0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

explorer.exe 1280 0x01580000 0x1580fff0 VadS 0 PAGE_EXECUTE_READWRITE

Dumped to: hidden_dumps/explorer.exe.2e68960.01580000-01580fff.dmp

0x01580000 b8 35 00 00 00 e9 8b d1 38 7b 68 6c 02 00 00 e9 .5......8{hl....

0x01580010 94 63 39 7b 8b ff 55 8b ec e9 a3 2e c9 75 8b ff .c9{..U......u..

0x01580020 55 8b ec e9 7e 60 c4 75 8b ff 55 8b ec e9 94 e9 U...~‘.u..U.....

0x01580030 c4 75 8b ff 55 8b ec e9 8a 2f c9 75 8b ff 55 8b .u..U..../.u..U.

0x01580040 ec e9 4b 4d c4 75 8b ff 55 8b ec e9 9f 82 c4 75 ..KM.u..U......u

0x01580050 8b ff 55 8b ec e9 ab 90 c7 75 8b ff 55 8b ec e9 ..U......u..U...

0x01580060 98 89 c5 75 6a 2c 68 10 7b 1c 77 e9 59 79 c4 75 ...uj,h.{.w.Yy.u

0x01580070 8b ff 55 8b ec e9 de 9b c7 75 8b ff 55 8b ec e9 ..U......u..U...

Disassembly:

01580000: b835000000 MOV EAX, 0x35

01580005: e98bd1387b JMP 0x7c90d195

0158000a: 686c020000 PUSH DWORD 0x26c

0158000f: e99463397b JMP 0x7c9163a8

01580014: 8bff MOV EDI, EDI

01580016: 55 PUSH EBP

01580017: 8bec MOV EBP, ESP

01580019: e9a32ec975 JMP 0x77212ec1

0158001e: 8bff MOV EDI, EDI

01580020: 55 PUSH EBP

The first injected region found by malfind, starting with an MZ header, contains the code
we are looking for. A full dump of this region is created by malfind in the hidden_dumps folder.
This dump can be imported into a disassembler such as IDA Pro for analysis.
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Appendix B

Annotated Zeus Assembly Listings

This appendix contains several annotated assembly listings from the Zeus binaries we analyzed.
These listings may help readers to begin reversing newly extracted Zeus binaries.

The following listing represents the XOR algorithm Zeus uses to decrypt network packets. The
src pointer is passed on the stack, and points to the bytes to decrypt. The bytes are decrypted
into the dest buffer, pointed to by edx. The len parameter contained in eax represents the
number of bytes in the src buffer.

; int zeus_xor_decrypt(const void *src, const void *dest<edx>, int len<eax>)

cmp [esp + src ] , edx ; are src and dest arrays the same?

jz short loop_preamble ; if so, go straight to the loop

push eax ; else push arguments...

push [esp + src ]
push edx

call custom_memcpy ; ...and call a custom memcpy

jmp short loop_preamble

loop_main :
mov cl , [eax + edx − 1] ; load previous byte

xor [eax + edx ] , cl ; and xor it with current byte

loop_preamble :
dec eax

jnz short loop_main

retn 4

Zeus also supports RC4 encryption. The RC4 encryption is used among other things to
encrypt configuration files. The Zeus RC4 implementation is listed below. The parameter S

points to the RC4 Sbox, which is extended to save the RC4 i and j parameters across encryption
rounds. The len, dest and src parameters have the same meanings as in the XOR decryption
algorithm listed above.

; int rc4_encrypt(char *S<eax>, int len<edx>, void *dest<ecx>, void *src)

push ebp

mov ebp, esp

push ecx ; push dest pointer twice

push ecx

push edi ; save old edi

mov edi , ecx ; copy dest pointer into edi

mov cl , [eax + 100h ] ; i from previous round is stored at S + 256

mov [ebp + i ] , cl

mov cl , [eax + 101h ] ; j from previous round is stored at S + 257

mov [ebp + j ] , cl

test edx , edx ; test if there are bytes to encrypt
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jz short exit ; if not, jump to the exit point

mov ecx , [ebp + rounds_left ]
sub ecx , edi

push ebx

mov [ebp + src_offset ] , ecx ; src_offset = src_ptr - dest_ptr

mov [ebp + rounds_left ] , edx ; rounds_left = len

push esi

loop :
inc [ebp + i ] ; i = i + 1

movzx esi , [ebp + i ]
mov dl , [ esi + eax ]
add [ebp + j ] , dl ; j = j + S[i]

movzx ecx , [ebp + j ]
mov bl , [ecx + eax ]
mov [ esi + eax ] , bl ; S[i] becomes S[j]

mov [ecx + eax ] , dl ; S[j] becomes old S[i]

movzx ecx , byte ptr [ esi + eax ] ; ecx = S[i]

movzx edx , dl ; edx = S[j] (old S[i])

add ecx , edx ; add S[i] and S[j]...

mov edx , [ebp + src_offset ]
and ecx , 0FFh ; ...mod 256

mov cl , [ecx + eax ] ; cl = S[(S[i] + S[j]) mod 256]

xor cl , [edx + edi ] ; xor keystream byte with plaintext byte

mov [ edi ] , cl ; save the output byte

inc edi

dec [ebp + rounds_left ]
jnz short loop

pop esi

pop ebx

exit :
mov cl , [ebp + i ]
mov [eax + 100h ] , cl ; save i in Sbox for next encryption round

mov cl , [ebp + j ]
mov [eax + 101h ] , cl ; save j in Sbox for next encryption round

pop edi

leave

retn 4

The RC4 key scheduling algorithm is implemented as shown in the following listing. The
parameter S again points to the RC4 Sbox, while the parameter key points to the key used to
initialize the Sbox. The parameter key_len contains the length in bytes of the RC4 key.

; int rc4_key_schedule<eax>(char *S<eax>, char *key, int key_len)

push ebp

mov ebp, esp

push ecx

push ebx

xor ecx , ecx ; i = 0

push esi

push edi

mov [ebp + k ] , cl ; k = 0 (k is the key index, the same as i)

mov [ebp + j ] , cl ; j = 0

mov [eax + 100h ] , cx ; S + 256/S + 257 store i/j, set both to 0

mov esi , eax ; pointer to current S index (S[i])

mov edx , 100h

initial_Sbox_loop :
mov [ esi ] , cl ; S[i] = i

inc ecx ; i++
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inc esi ; increment pointer to current S index

cmp cx , dx

jb short initial_Sbox_loop ; loop if i < 256

mov esi , eax ; set esi to initial S index again

mov edi , edx ; 256 rounds to go

key_scheduling_loop :
movzx ecx , [ebp + k ]
mov ebx , [ebp + key ] ; base of key array

mov cl , [ecx + ebx ] ; cl = key[k] (analogous to key[i])

mov dl , [ esi ] ; dl = S[i]

add cl , dl ; cl = S[i] + key[i]

add [ebp + j ] , cl ; j = j + S[i] + key[i]

movzx ecx , [ebp + j ]
mov bl , [ecx + eax ] ; bl = S[j]

inc [ebp + k ] ; k++

mov [ esi ] , bl ; S[i] = S[j]

mov [ecx + eax ] , dl ; S[j] = dl, where dl contains old S[i]

movzx ecx , [ebp + k ]
cmp ecx , [ebp + key_len ] ; if key index has hit key length...

jnz short end_key_scheduling_round
mov [ebp + k ] , 0 ; ...then wrap it to 0

end_key_scheduling_round :
inc esi ; set esi to point to next S index

dec edi ; decrement number of rounds left

jnz short key_scheduling_loop

pop edi

pop esi

pop ebx

leave

retn 8

Zeus uses the following code to compute the payload length of a received message according to
the formula payload_len = packet_len - header_len - padding_len. The packet parame-
ter points to a struct containing all the information needed to handle the received message.

; int payload_len(zeus_packet *packet<ecx>)

movzx eax , word ptr [ecx + 14h ] ; ecx + 14h points to msg len

cmp eax , 44 ; is the msg long enough?

ja short valid_msg
xor eax , eax ; if not, return zero

retn

valid_msg :
movzx ecx , byte ptr [ecx + 18h ] ; ecx + 18h points to header[2]

add eax , 0FFFFFFD4h ; -44 in two’s complement

sub eax , ecx ; subtract the value of header[2]

retn ; payload_len = msg_len - 44 - header[2]

The XOR–metric used by Zeus to determine the distance between two peers is computed as
follows. The id1 and id2 parameters contain the two identifiers for which the XOR–metric is to
be computed. The XOR difference computed between the two identifiers is saved into the buffer
pointed to by metric_dest.

; int calculate_xor_metric(char *id1<eax>, char *id2<ecx>, char *metric_dest<edx>)

push esi

push edi
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mov esi , edx ; esi indexes the metric dest buffer

push 14h ; decimal 20, number of bytes in SHA1 hash

sub ecx , eax ; indexing offset to id2

sub esi , eax ; indexing offset to metric

pop edi ; size of SHA1 hash

loop_calculate_metric :
mov dl , [ecx + eax ] ; load byte from id2

xor dl , [eax ] ; xor with byte from id1

mov [ esi + eax ] , dl ; store byte in metric

inc eax ; next byte

dec edi ; decrement number of bytes left

jnz short loop_calculate_metric

pop edi

pop esi

retn
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